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ABSTRACT

This thesis is a mixture of basic and applied Cognitive Science research which has
three parts. The first part describes a new theory of geometry proof skill and the
empirical support for it. The second pan describes the use of this theory in the
development of a second generation intelligent tutoring system called ANGLE: A New
Geometry Learning Environment. The third pant desciibes a preliminary evaluation of
ANGLE comparing it with the first generation Geometry Proof Tutor (GPT).

The theory of geometry proof skill presented here is based on a “step-skipping”
analysis of the verbal reports of subjects solving proof problems. The data collected
contradict previous theories that characterize geometry problem solving as heuristic
search through a problem space of formal geometry rules. Instead of using such a
localized and formal strateqy, skilled subjects take a global planning approach that
uses more intuitive conceptual and perceptual knowledge and leaves the formal
details for last. A cognitive model of this approach {implemented as a computer
program) turns out to be both more efficient than previous models and a better match
to the human data. In addition, this model ties together a number of empirical results
on the nature of human expertise and supports an inductive explanation of skill
acquisition that is in contrast with the deductive approach typical of some dominant
theories of skill acquisition.

While the basic research has uncovered a psychologically plausible method for
successful and efficient geometric reasoning, the goal of the applied research is to see
if geometry instruction can be improved by teaching this method to students. | built a

-computer tutor, called ANGLE, to test this idea. In ANGLE, the instruction is delivered

both implicitly through the structure of the computer interface and explicitly through
tutoring strategies and messages. The design of ANGLE was theoretically motivated
by the cognitive model. For example, ANGLE's interface reifies the key underlying
processes in the cognitive model and, in doing so, provides students with a novel
notation with which to think about geometry.

With the creation of ANGLE it is possible to test the hypothesis that the
development of more accurate models of skilled problem solving can lead to better
instruction. We can test this hypothesis by comparing ANGLE wzth GPT, an eariier
tutor for geometry based on a less accurate cognitive mode!. A prelimi inary

“shakedown” study of this kind was performed and at this point, ANGLE is neither
significantly better nor worse than GPT. The study revealed some limitations in the
implementation of ANGLE and in the training curriculum. The thesis concludes with
suggestions for remedies to these limitations that will put us in a better position to
perform a more realistic test of the hypothesis.




INTRODUCTION

This thesis is a mixture of basic and applied Cognitive Science research which comes
in three chapters. Chapter 1 describes a study and a new theory of skilled geometry
proof problem solving. Chapter 2 describes the use of this theory in the development
of a second generation intelligent tutoring system called ANGLE: A New Geometry
Learning Environment. Chapter 3 describes a preliminary evaluation study of ANGLE
comparing it against the first generation Geometry Proof Tutor (GPT).

The contributions of this thesis include:

1. A new methodology for verbal protocol analysis involving the identification of
step-skipping with respect to the execution space of a domain.

2. A new theory of geometry expertise (DC) that accurately describes human
behavior, has an efficient computer implementation, and pulls together a
number of empirical results on the nature of human expertise.

3. A detailed characterization of the end-state of a complex learning process
that challenges current learning thecries and that can be used as a test-case
for new learning theories.

4. A theory-based approach to the design of the interface and tutoring
components of an intelligent tutoring system (ANGLE).

5. An initial test of the hypothesis that the development of more accurate and
powerful cognitive models of problem solving can lead to major
improvements in the instruction of problem solving, particularly within the
context of an intelligent tutoring system.




CHAPTER 1.
A STUDY AND MODEL OF GEOMETRY PROOF PLANNING

in this chapter | present verbal report data and a computer simulation of geometry
proof planning. This domain is a difficult one for human problem solvers and has been
studied by a number of cognitive science researchers (Gelernter, 1963; Nevins, 1975;
Greeno, 1978; Anderson, et. al., 1981}, We were motivated 1o take another look at this
domain by the observation that skilled problem solvers are able to focus on key
problem solving steps and skip minor ones in the process of generating a solution
plan. We found a surprising regularity in the kinds of steps expert subjects skipped
and built a computer model, called DC, to account for this regularity.

1.1 THE EXECUTION SPACE OF GEOMETRY

Geometry proof problem soiving is hard. For a typical geometry proof , the search
space of possible geometry rule applications (i.e., theorems, definitions, and
postulates) is quite large. Problem 7 in Figure 1.1 is a typical high school geometry
proof problem. At the point in the high school curriculum where this problem is
introduced there are 45 possible inferences that can be made from the givens of this
problem, from these inferences another 563 inference can be made, from these
greater than 100,000 ¢an be made.

While it is true, as Newell and Simon (1972} pointed out, that there are muitiple
possible problem spaces for any problem domain, there is typically one problem
space which is the most natural starting point for attempting to characterize human
behavior in that domain?. It seems that quite often, particularly in math and science
domains, this problem space is made up of operators which correspond one-to-one
with the steps that problem solvers typically or conventionally write down in solving a

- problem in that domain. We call such a space the execulion space of a domain as it
corresponds with the way problem solutions are “executed” (though not necessarily
with how they are planned). Applying this definition to geometry, we find the execution
space operators 10 be the various definitions, postulates, and theorems that appear as
the “reasons” in the steps of the conventional two-column format used for writing
procfs,

- The number of inferences reporied at the start of this section were inferences within
the execution space. Clearly, the geometry execution space is enormous. In the DC

- mode! described below, we achieve search control by initially planning a solution

sketch in a problem space that is more abstract (i.e., more compact) than the

- eXecution space. In contrast, the traditional approach has been to look for better

- search strategies and heuristics to use within the execution space. Gelernter's (1963)

- geometry theorem proving machine used a backward search strategy in the execution

Space and used the diagram as a pruning heuristic. More recently, Anderson, Boyle &

Yost, (1985) built a geometry expert system as a cognitive model of students and a

component of an intelligent tutoring system. The Geometry Tutor expert (GTE) used an

Opportunistic or best-first bidirectional search strategy in the execution space and

*-N_eweii and Simon (1972, p. 144) refered to a “basic problem space” and identified a basic problem
Pace in cryptarithmetic, chess, and logic.




used various contextual features as heuristics for predicting the relevance of an
operator. (I review these systems and a couple others in Section 1.5.} While GTE
provided a reasonably good model of students, as evidenced by the success of the
Geometry Tutor {Anderson, Boyle, Corbett & Lewis, 1990), | found that the mode of
attack of human experts was distinctly different from that of GTE. it seemed imponant
to be able to characterize this expertise both as a goal in and of itseif and for

pedagogical purposes.
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1.2 EXPERT HUMAN PROBLEM SOLVING

1.2.1 Step Skipping and Abstract Planning

One feature that distinguishes geometry experts is that they do not make all the steps
of inference that students do while developing a solution plan. Consider the protocol
in Table 1.1 of an exper {(Subject R) solving Problem 3 shown in Figure 1.1, The left
side of the table contains the protocol and the right side indicates our coding of the
subject's actions.

TABLE 1.1
A Verbal Protocol for a Subject Solving Problem 3.

e dede Piﬁi’iﬁiﬁg phase de ek ok

Bl: We're given aright angle — this is a right Reading given: rt ZADB

angle, Inference step 1: AC L BO
B2:  perpendicular on both sides [makes

perpendicular markings on diagram]; Reading given: BD bisects
B3: BD bisects angle ABC [marks angles ABD ZABC

and CBD]

! Inference step 2: AABD € ACBD
B4: and we're done. Aokt el e gxeiiﬁan phase ¥tkik
In this phase, the subject refines
and explains his solution to the
experimenter.

BS5:  'We know that this is a reflexive [marks line
BD],

B6:  we know that we have congruent iriangles; we
can determine anything from there in terms of
comresponding parts

B7: and that's what this [looking at the goal
staterent for the first time] is going to mean
.. that these are congruent {marks segments
AD and DC as equal on the diagram}.

This expert had a reliable solution sketch for this problem in 13 seconds at the

- point where he said “we're done” (emphasis mine). He plans this solution sketch
without looking at the goal statement (more on this curious behavior in Section 1.4.3)
. and in the remainder of the protocol he elaborates the solution sketch, reads the goal

statement, and explains how it is proven. His words “we're done” indicate his

realization that the two triangles ABD and CBD are congruent and that therefore he
knows everything about the whole problem — as he explains later: "we can determine
ything from there in terms of corresponding parts”.
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Figure 1.2. The final solution for Problem 3. The givens of the
problem are at the bottom and the goal is at the top. The lines represent
inferences with the conclusion at the arrow head, the premises at the
tails, and the justifying geometry rule at the dot in between. The
statements Subject R mentioned during planning (see Table 1.1) are
numbered while the ones he skipped are circled.

Figure 1.2 shows the soclution {o the problem in the proof tree notation of the
Geometry tutor. Apart from the givens and goal, the statements which the expert
mentioned while solving this problem are numbered in Figure 1.2 while the skipped
sleps are circled. Assuming this expert's verbalizations accurately reflect his working
memory states (Ericsson and Simon, 1984}, we conclude that the expert only makes
certain key inferences in his search for a solution while skipping other, apparently
inor inferences.

.2.1.1 Abstraction. In the terminology of the problem solving literature, it seemed

ear that experts were initially planning their proof in an abstract problem solving

ace (Newell & Simon, 1972; Sacerdoti, 1974; Unruh, et. al., 1987). They were

onng cerain distinctions such as the distinction between congruence and equality
hey were skipping over certain kinds of inferences, particularly the algebraic
ences. It turns out that ignoring the algebralc inferences considerably reduces the
of the search space. We establish this fact in the analysis of the mode! below by




comparing the size of the execution space for Problem 7 with and without the
algebraic inferences (see Section 1.4.1).

We distinguish two types of abstract planning, risky and safe. Risky abstractionis a
type of abstraction where details can be ignored that are sometimes critical to arriving
at a correct solution. Newell and Simon (1972) showed that during planning, subjects
solving logic problems would often ignore cartain aspects of the expressions they
were working with. This abstraction was often very effective in guiding their problem
solving search. However, sometimes subjects failed to successfully refine an abstract
plan biecause one of the details ignored in the abstraction process turned out to be
critical.

A safe absiraction only ignores irrelevant details, i.e., details which only
discriminate between objects that are functionally equivalent with respect 10 the
problem solving task. For example, in ignoring the details that distinguish between
congruence statements (e.g., A% £ €D0) and measure equality statements (e.g., mABE =
mCD) geometry problem solvers are performing a safe abstraction since these
statements are equivalent with respect to making proof inferences. Any inference that
can be made from one can be made from the other.

1.2.1.2 Macro-operators. In addition to performing useful abstractions, expert probiem
solvers have been characterized by the fact that they often collapse multiple problem
solving steps into a single step {Anderson, 1983; Larkin, et. al., 1980b). In the field of
problem solving this is known as the formation of macro-operators (Nilsson, 1872,
Korf, 1985). Macro-operators are the chunking together of a sequence of operators
which are often used consecutively to achieve a particular goal. Although geometry
experts appear to have certain macro-operators, these operators are not just arbitrary
compositions of geometry rules which can be used in sequence. Rather, thereis a
regularity in the kinds of macre-operators experts have. Not only does the same
expert skip the same kinds of steps on different occasions, but different experts appear
to skip the same kinds of steps in similar situations, :

In summaty, | found that experts were not planning solutions in the execution space
as previous models have, In addition, it appeared that expert's planning space could
not be accounted for by a straight-forward application of standard learning
- mechanisms to the execution space. Typical abstraction methods lead to risky
abstractions, while experts’ abstractions were safe. Typical macro-operator learning
mathods do not predict the kind of regularity in step-skipping that we found of the
experts. Thus, | was led fo search for a new problem space for geometry theorem
proving — one that was a safe abstraction of the execution space and that left out the
same kind of steps as the experts did.

1.2.2 Use of the Diagram

gesides not working in the execution space, expens' inference making was largely
tied to the diagram. [ found that the regulasity in experts' step-skipping can be :
aptured by knowledge structures that are cued by images in the problem diagram. In
antrast, execution space inferences are cued off the known and desired statements in
@ problem. Larkin and Simon (1987) suggest two reasons why diagrammatic
Presentations might be critical to problem solving in domains like geometry. First,

D€ can use Jocality of objects in the diagram to direct inference and second,

erceptual inferences can be made more easily than symbolic inferences.
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Let us consider their point about locality first. A familiar strategy of high school
geometry students is to record proof steps by marking the problem diagram as an
alternative to writing them down in statement notation. Such an annotated diagram
aids students in holding together information that they need to make further inferences.
In contrast, information within a list of written statements may be visually separated
and require search to identify, For instance, to use the side-angle-side rule for
inferring tiangle congruence a problem solver must locate three congruence
relationships — two between corresponding sides of the triangles and one batween
corresponding angles. In searching a list of statements for these three relationships,
one might need to consider numerous possible combinations of three statements that
exist in the list. However, if these relationships are marked on a diagram, one can
quickly identify them since the side-angle-side configuration comes together in each
triangle at a single vertex. In other words, related information is often easierto find in a
diagram because it is typically in the same locality whereas the same information may
be separated in a list of statements. This is the locality feature of diagrams.

The example above illustrates the role of the diagram in aiding knowledge search
~ i.@., the search for applicable knowledge. The geometry diagram can also be used
to aid problem search — i.e., the search for a probiem solution!. The idea is that
images in the diagram can be used to cue chunks of knowledge which serve as
operators in an abstract planning space. The notion that external representations can
play a major role in guiding problem solving is the central notion of Larkin's display-
based reasoning approach {Larkin, 1988). Our approach elaborates on this one by
showing how the organization of an extemnal representation can be used to cue
abstract planning operators. These abstract operators reduce problem search by
packing many execution steps into a single inference.

Larkin and Simon's second point, that diagrams allow easy perceptual inferences
to replace hard symbolic ones, is based on an assumption that perceptual inferences
are generally easier than symbolic inferences. While | agree with this assumption, it
seems unlikely that perceptual inferences are somehow inherently easier {except in
terms of the locality feature noted above). Rather, it is possible that perceptual -
inferences appear easier because, in general, they have been much more highly
* practiced than symbolic inferences. Nevertheless, since it is likely that students of
- geometry have had more prior experience with geometric images than with formal
notations and since diagrams typically have the locality feature, students are likely to
find perceptual inferences in this domain easier.

1.3 THE DIAGRAM CONFIGURATION MODEL

_B____ase_é on the observations of experts, | tried to design a system for geometry theorem
proving that would be both more powerful and more like human experts than previous
stems. The model | came up with, the Diagram Configuration model {DC}, has one
ajor knowledge structure, diagram configuration schemas, and three major
Ocesses: diagram parsing, statement encoding, and schema search. Section 1.3.1
ribes DC's diagram configuration schemas, while Section 1.3.2 describes DC's

8 chapter 2 in Newell (1990) for more discussion on the distinction between knowledge search
blem search,
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processing components. Section 1.3.3 describes how DC uses a special class of
diagram configuration schemas to avoid difficult algebra sub-proofs.

1.3.1 Diagram Configuration Schemas

The core idea of the DC model is that experts have their knowledge organized
according to diagrammatic schemas which we call diagram configuration schemas.
These are clusters of geometry facts that are associated with a single prototypical
geometric image. Figure 1.3 shows two diagram configuration schemas.

CONGRUENT-TRIANGLES-SHARED-SIDE PERPENDICULAR-ADJACENT-ANGLES:
Configuration: 2 X Configueation: N
'
z L M
W
Whole-statement: AXYM & AXZY Whole-statement: TH L WP
Part-slatements: 1, XY = ¥Z_ Part-statements: 1. rt ZLPM
’ 2.Yu=7u 2.7t LZMPR
3, LY% L2 3, ZLPH = ZMPN
4. ZYRW = LZ0Y
9. LRUY = LXWZ Ways-H{o-prove: {13 {2} {3}
Ways-o-prove: {1 2} {+ 4} {2 5}
{4 5} {3 4} {3 5)

Figure 1.3, Two examples of diagram configuration schemas. The
numbers in the ways-to-prove indicate part-statements. Thus, in the
CONGRUENT-TRIANGLES-SHARED-SIDE schema {1 2} means that if the
part-staternents XY = XZ and YW = ZW are proven, all the statements of
the schema can be proven.

The whole-statement and part-statements attributes of a schema store the facts
which are associated with the geomefric image stored in the configuration attribute.
The configuration is a prototypical configuration of points and lines which is commonly
a part of geometry diagrams. In Figure 1.3, the configuration on the left is a prototype
Or any set of lines that form two triangles with a side in common. The whole-statement
5 the geometry statement which refers to the configuration as a whole. The part-
Statements refer to relationships among the parts of the configuration. The whole-
Staternent of the CONGRUENT-TRIANGLES-SHARED-SIDE schema refers to the two

gles involved while the part-statements refer to the corresponding sides and

es of these triangles. The ways-fo-prove are used to determine whether

ences can be made about a configuration. They indicate subsets of the part-
ements which are sufficient to prove the whole-statement and all of the pan-
ements. For example, the first way-to-prove of the CONGRUENT-TRIANGLES-SHARED-
-schema, {1 2}, indicates that If the part-statements %¥ = ¥Z and ¥W = Zw have been
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I3

proven, the schema ¢an be proven — that is, all the other statements of the schema can
be proven.

The basic proposal is that planning is done in terms of these schemas rather than
the statements of geometry. The problem solver tries 1o establish that various
schemas are true of the diagram. Establishing one schema may enable establishing
another. Because there are a small number of schemas possible for any particutar
problem diagram, the search space of schemas is much smaller than the execution
space.

Consider Problem 3 and the expert protocol in Table 1.1. In the planning phase,
the subject made four verbalizations. Of these four verbalizations, fwo indicate his
reading and encoding of the given statements and two indicate inferences.
Essentially, the subject solved the problem in two steps. In contrast, the complete
execution space solution (see Figure 1.2) requires seven geometry rule applications.
in other words, a problem solver who was planning in the execution space would take
at least seven steps to solve this problem. DC's solution to this problem, like the
subject's, is much shorter — it involves only two schemas. An instance of the
PERPENDICULAR-ADJACENT-ANGLES schema can be established from the givens of the
problem, while an instance of the CONGRUENT-TRIANGLES-SHARED-SIDE schema can be
established as a result. We now describe the processes DC uses to recognize and
establish schemas.

1.3.2 DC's Processing Components

DC has three major processing stages: 1) diagram parsing in which it identifies
familiar configurations in the problem diagram and instantiates the corresponding
schemas, 2} statement encoding in which it comprehends given and goal statements
by canonically representing them as part-statements and 3) schema search in which it
iteratively applies schemas in forward or backward inferences until a link between the
given and goal statements is found. Human experts integrate these processes so that
they do not occur In any fixed order except to the extent that some statement encoding
- and diagram parsing has to be done before any schema search ¢an begin. However,
. in the computer simulation each process is done to completion before the next begins.
- We implemanted these processes as separate stages so that we could independently
evaluate the role each has in reducing search relative to planning in the execution
zpiace‘ In turns out the diagram parsing process plays a major role as we describe
glow.

1.3.2.1 Diagram Parsing and Schema Instantiation. Diagram parsing is the process of
ecognizing configurations in geometry diagrams and instantiating the corresponding

schemas. Diagram parsing consists of both a low-level component which recognizes

mple geometric objects and a higher level inductive component which hypothesizes
ausible diagram configurations.

The DC simulation starts with a very simple point and fine representation of a
ﬁb§§m diagram. From this representation it must recognize line segments, angles,
triangles and construct an internal representation of each. In addition, the

rithm records approximate size measures of the segments and angles it identifies.

ing the information creatad by this low-level object recognition process, DC
for instances of abstract configurations. Figures 1.4a and 1.4b illustrate the
configurations for proof problems in a typical course up to and including the
of tiangle congruence. In some cases an image in a problem diagram may
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appear to be an instance of a known diagram configuration, but not actually be an
instance because it is not properly constrained by the givens of a problem. On the
other hand, some configurations do not need to be constrained by the problem givens
to be a diagram configuration instance. These are called basic configurations and

appear in the square cornered boxes in Figure 1.4al,

Sogment-Based-
GConfigurations

Configurations

Angle-Based-
Sonligurations

Triangle-Based-
Configurafions

=

|
>
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iy
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Adj-Segs -Angs Cross Parafiel-Linag | Parallels-Trans Trigngle
Bisected | | Bisacted | |[Adj-Compl |Perp-Adj Perp- Parallel Paraliels-
-Seg AN -Angs -Angs cross -Lines Jrans
KEY:
Adj Adjacent Parp  Perpendicular

Cong Congruent
Comp Complementary

Bupp  Supplemertary
Trans  Transversal
WP Whole-part congruence

Equilat

Equilat Equilateral
lsos lsoscalas

Figure 1.4a. The diagram configurations for geometry up to and
including the topic of wiangle congruence. The configurations in
rectangles are basic configurations which can be recognized immediately
in problem diagrams. The other configurations are specializations of
these in which certain relationships appear to hold among the parts of
the configuration.

As you might notice from looking at some of the basic configurations, DC assumes that points which
ar collinear (on the same line) in a problem diagram actually are collinear. This assumption is

ly made in high school classrooms and subjects were told that they could assume it in the
ms they solved.
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DC uses the low-level object information to recognize instances of the basic
configurations. The other configurations are either specializations of the basic ones
(and thus are attached below them in Figure 1.4a) or specializations of pairs of basic
configurations (see Figure 1.4b). To recognize possible specializations, DC uses the
segment and angle size approximations to check whether any of the basic
configurations have the necessary properties to be specialized. For example, to
recognize the ISOSCELES-TRIANGLE configuration, DC checks the triangles it has
identified to see if any have two equal sides.

Paired-Configurations

Segment-Pairs Angle-Pairs Triangle-Pairs

Weiorevanl

]

WP-Adi-Seg

Wovssmmme—
A———

Equal-Hall P-Adi-Angs
-Segs LOrvetlap

Equai-
Hall-Angs

WP-Adj-Comp-
Angs-Overlap

Figure 1.4b. The pairing of basic configurations where relationships
hold among the corresponding parts of the configurations paired.

DC’s diagram parsing algorithm corresponds with a very powerful visual process in

dmans. We make no claims that the internal steps of this algorithm match those of

€ corresponding human process. For instance, while it is quite likely that human

@ptual processes make extensive use of symmetry in recognizing geometric

s, DC makes no use of symmetry. We do claim that human expents are capable

?%nging these configurations and make extensive use of this ability in solving
foblems,
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The final result of diagram parsing is a network of instantiated schemas and parnt-
statements, Figure 1.5 illustrates this network for Problem 3. H is interesting to note
that although no problem solving search is done in this first stage, in effect, most of the

roblem solving work is done here. The resuiting network is finite and usually quite

smali. Searching it is fairly trivial.

ADEpC, ABEBC JAELC
GOAL

LABD E 208D
. GIVEN

Figure 1.5. DC's solution space for Problem 3. The schemas DC
recognizes during diagram parsing are shown in the boxes. The lines
indicate the part-statements of these schemas. A solution is achieved by
finding a path from the givens to the goal satisfying the constraints of
the ways-to-prove slot of the schemas used.

1.3.2.2 Statement Encoding. After parsing the diagram in terms of diagram
configurations, DC reads the problem given and goal statements. Statement encoding
corresponds to problem solvers’ comprehension of the meaning of given/goal
_statements. We claim that problem solvers comprehend given/goal statements in
lerms of part-statements. When a given/goal statement is already a part-statement, DC
encodes it directly by appropriately tagging the part-statement as either “known” or
“desired”. However, there are two other possibilities.

- First, if the given/goal statement is one of a number of alternative ways of
exprassing the same part-statement, it is encoded in terms of a single abstract or
canonical form. For example, measure equality and congruence, as in mAE = mBC and
AB £ BT, are encoded as the same part-statement. Using this abstract representation,
DC avoids inferences, required in the execution space, that establish the logical
equivalence of two alternative expressions of the same fact.

. Second, if the given/goal statement is the whole-statement of a schema, it is

coded by appropriately tagging all of the part-statements of that schema as “known”
case of a given or “desired” in the case of a goal. For example, the second

en of Problem 3, 80 bisects LABC, is the whole-statement of a BISECTED-ANGLE
hema. DC encodes it by establishing its only part-statement ZABD = ZCRD as

11 (see Figure 1.5). Similarly, DC encodes the goal statement of Problem 3 by

g the part-statement AD & TO as desired.

3 Schezpa Search. Based on its parsing of the diagram, DC identifies a set of
configuration schemas which are possibly true of the problem. Its agenda
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then becomes to establish enough of these schemas as true so that the goal statement
is established in the process. Typically, one of the ways-to-prove of a schema can be
pstablished directly from the encoded givens. So for instance, in Problem 3 the
PERPENDICULAR-ADJACENT-ANGLES schema can be concluded immediately. Other
schemas require that additional statements be established about the diagram in order
that they may be concluded. Thus, it was only after the PERPENDICULAR-ADJACENT-
ANGLES schema is established in the example problem that the CONGRUENT-
TRIANGLES-SHARED-SIDE schema can be established. At this level, DC is performing a
search through the space defined by its diagram schemas much like the search GTE
and other previous models perform through the execution space as defined by the
rules of inference of geometry. We will refer to the space DC works in as the diagram
configuration space.

As in the execution space, a search strategy and heuristics can be employed to
guide search in the diagram configuration space. At any point DC has a number of
schemas which it might apply. The system has a selection heuristic to chose among
these schemas. Although a more powerful heuristic could be used, we have found
that because the diagram configuration space is so small, a simple heuristic is
sufficient. In addition, this heuristic is consistent with our subjects who do not seem to
spend much time evaluating alternatives, but rather forge ahead with the first
reasonabie inference that occurs to them.

Essentially, DC's selection heuristic implements a bidirectional depth first search.
A schema is applicable if there are proven part-statements which satisfy one of the
schema's ways-to-prove. ltis desiredif its whole-statement or one its part-statemenis
are goals of backward reasoning. If a schema is both applicable and desired, then DC
selects it. Otherwise, DC either makes a forward inference by selecting any applicable
schema or makes a backward inference by selecting any desired schema which is one
statement away from satisfying ones of its ways-to-prove.

The selection heuristic is made more efficient by only considering schemas which a
quick estimate determines are potentially applicable. A schema is potentially
applicable when the number of its part-statements which are proven is equal or
- greater than the size of the smallest way-to-prove. This estimate of applicability is
. much quicker to compute than checking all the ways-to-prove and it eliminates from
- consideration schemas which are clearly not applicable at the current moment. |t also
eads to an interesting prediction. Since the heuristic only estimates whether a

hema is applicable, it is possible that a schema will be selected even though it is not
applicable (and not desired). For example, a CONGRUENT-TRIANGLES-SHARED-SIDE
schema may be selected when two of its part-statements are known even though
hese part-statements do not make up a way-to-prove (e.g., because they form the
nsufficient angle-side-side combination). More than once we observed subjects
doing just this, considering whether two triangles are congruent because they had the
fight number of statements but failing because they did not have the right combination
Statements. In Section 1.5.4.2, we relate this phenomenon to an “indefinite
bgoaling” phenomenon identified by Greeno (1976).

3.3 Avoiding Algebra In the Diagram Configuration Space

2 of the places where the Geometry tutor expert (GTE) gets bogged down while
empting difficult problems is in the fruitiess application of algebra inferences.
Pt_a expressions can be combined and manipulated in infinite variety and as a




17

result, algebra inferences often lead problem solvers into black holes in the search
space from which they may never return (see the analysis in Section 1.4.1). Thus, itis
worth discussing how DC avoids the black hole of algebra.

DC avoids the algebra sub-space by having schemas which abstract away from
algebra — in other words, these schemas are essentially macro-operators that make
the same conclusions in one step that would require many steps to do by algebra.!
These schemas are not ad hoc additions 10 remedy the ditficulty with algebra sub-
proofs. They correspond with particular geometric images and are formally no
different than other diagram configuration schemas. They are instantiated as a resulf of
diagram parsing and can be used when needed in place of difficult algebra sub-
proofs. Essentially, these schemas provide a way to recognize when algebra is
needed and when it is not needed. GTE does not have such a capability.

A single type of algebra schema handles most of the algebraic inferences. We call
these schemas WHOLE-PART congruence schemas and they correspond with the
configurations in Figure 1.4b that begin with WP, Qur WHOLE-PART schemas are
essentially the same as the WHOLE/PART schemas discussed in Anderson, Greeno,
Kiine and Neves {1981) and Greeno (1983).

A great variety of WHOLE-PART schemas can be formed by pairing any two
component configurations which have corresponding parts (see Figure 1.4b).
However, it would be misleading to suggest that all algebra sub-proofs can be solved
using some WHOLE-PART schema. For example, the geometric proof of the
Pythagorean theorem requires an algebra sub-proof involving multiplication and
squaring which are outside the scope of WHOLE-PART schemas. Nevertheless, the vast
majority of problems in a high school curriculum that require algebra sub-proofs fall
within the scope of WHOLE-PART schemas.

1.4 EVALUATION OF THE DC MODEL

The purpose of this section is to discuss the strengths and limitations of the DC model.
First, we describe a formal analysis of relative size of the execution space and the
- diagram configuration space to argue for the computational efficiency of DC. Second,
we show how the DC model captures the regularity in expert step-skipping that is
contrary to straight-forward abstraction and macro-operator learning approaches.
Third, we provide protocol evidence for a forward reasoning preference displayed by
_experts on easier problems. Finally, we discuss some of the limitations of the DC
mcgei{ in particular, we try o identify the task situations which stretch or break the
nogel.

1.4.1 A Combinatorial Analysis

gmparing the problem solving effectiveness of DC with othar models of geometry
heorem proving is complicated by the fact that there are are multiple sources of

While geornetry textbooks have lots of theorems to skip commonly occuming steps, they do not
any theorems equivalent to the algebra schemas we are proposing (at least none of the textbooks
ik  Seen do). There are two possible reasons for why they are absent. First, the utility of such
worems has been overiooked by textbook writers. 1 doubl that this first reason is right. Second, since
theorems are dependent on information which is implicit in the diagram but is not explicit in formal
Tents, they are left out because it is difficult 1o express them in geometry formalism.




18

intelligence in these modeis. In particular, the most important factors are 1) the
problem space representation and 2) the search heuristics used. In addition to GTE,
many previous models (e.g., Gelarnter, 1963; Goldstein, 1973} search in the execution
space. Variations in the problem solving effectiveness of these models can be
characterized by differences in search heuristics . Since DC uses a different problem
space as well as different heuristics, the task of comparison is complicated. A more
tractable task is to compare the problem space representations independent of
heuristics. Since search performance could be improved in both spaces by adding
heuristics, an analysis of the size of the two spaces should approximate the relative
effectiveness of modeis based on these spaces.

1.4.1.1 Mesthod of Analysis. The relative size of the execution and diagram
configuration spaces was measured by comparing the “bushiness™ of a brute force
forward search in each space on Problem 7 in Figure 1.1. The bushiness Is measured
by counting the number of operators that apply at each successive “ply” of operators.
The first ply is all the operators that can apply to the initial state (the givens). The
second ply is all the operators that can apply to the collection of known statements
created in the first ply. And so forth.

The operators we consider as part of the execution space are a collection of 27
definitions, postulates, and theorems that represent a significant share of the rules in a
standard geometry curriculum up to and inciuding rules for proving triangles
congruent. To simplify this analysis somewhat some rules concerning complementary
and suppiementary angles were left oul. The operators of the diagram configuration
space are diagram configuration schemas that correspond with the same slice of the
curriculum (as shown in Figures 1.4a and 1.4b).

In addition to performing this analysis on the execution space and diagram
configuration space, we also analyzed the size of the execution space when all the
algebra and algebra-related operators are eliminated from it. The three algebra rules
are the ADDITION-POSTULATE, SUBTRACTION-POSTULATE, SUBSTITUTICON. In addition to
these, any rules whose conclusions relate angle or segment measures need not be

_considered since these relationships can only be acted on by algebra rules. This
:_eliminates six more rules: DEF-MIDPOINT, DEF-BETWEENNESS, ANGLE-ADDITION, DEF-
RIGHT-ANGLE, DEF-CONGRUENCE, and SUM-TRI-ANGS. We did the same analysis with this
reduced rulg set.

1.4.1.2 Results and Discussion. Table 1.2 indicates the results for the analysis which
¢an be summarized as follows. In the execution space, 6 plies of breadth first search
are required and more than 108 operator applications are investigated. In the
execution space without algebra 6 plies are required but only 27 operator applications
re investigated. Interestingly, the size of the search space is dramatically decreased
algebra-related rules are not considered. Although this result is revealing, it doesn’t
ggest that we can just throw out algebra. Many problems require algebra sub-

ofs in their solutions and thus, the execution space without algebra is not a
Workable alternative. However, the analysis indicates that algebra-related interences
an be a major source of combinatonial explosion.

B gﬁ;
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TABLE 1.2
The Size of Three Different Problem Spaces on Problem 7.

‘Execution Execution Space Diagram
Space . without Algebra Configuration Space

1st ply* 45 14 "3
2nd ply 363 1 3
3rd ply >10° 3 2
4th ply >105 1
5th ply >105 © 2
6th ply >105 6
Total >106 27 8

*A ply is all the operator instantiations that apply to the known statements
produced by the previous ply.

Because of the larger grained operators of the diagram configuration space, only 3
plies of breadth first search and 8 operator applications are required. This space is so
much smaller than the execution space that a brute force search of this space can be
gffective whereas domain specific heuristics are necessary to effectively search the
axecution space. The diagram configuration space is als¢ significantly smaller than

-the execution space without algebra indicating its power is not derived solely by the
algebra-avoiding WHOLE-PART schemas. In addition, whereas the execution space

. without algebra cannot solve problems, iike Problem 5 in Figure 1.1, where aigebra is

‘required, DC can solve the majority of these problems.

'1.4.2 Accounting for Experts’ Step-Skipping Behavior

- In the process of planning a solution, our expert subjects made inferences that skipped
more than 50 percent of the steps necessary for a complete solution in the execution
space. In addition, we found that out subjects were skipping the same kinds of steps.
n this section, we show how the diagram configuration space accounts for this

tarity In step-skipping behavior.

4.2.1 Experimental Procedure. The data used for this analysis comes from four
subjects’ (B, K, J and F) verbal reports on one problem and one subject's (R) verbal
'eports on eight problems. Two of the single-problem subjects (B and K) were
mathematics graduate students while the other two {J and F) were researchers on the
eometry tutor project. Subject R is a high school gaometry teacher. All protocols

re collected using the concurrent protocol methodology of Ericsson and Simon

984) where subjects are asked to report what they are thinking as they problem

e. The four single-problem subjects were audio-taped as they entered their

ions using the interface of the Geometry tutor, while Subject R was video-taped as
de pencil markings on a paper diagram and reported his solution verbally. The

d of computer interactions on one hand and the video record of diagram marking -
U pointing on the other hand helped to resolve ambiguous verbal references like

S segment is equal to this segment”.
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1.4.2.2 Method of Protocol Analysis. The protocols were segmented inte 1) planning
episodes where subjects made inferences for the first time in the process of -
‘ deveioping a proof sketch, 2) refinement episodes where subjects refined their proof
sketch by filling in skipped steps, and 3) execution episodes where subjects indicated
steps in their final solution. The execution episodes of the single-problem subjects
correspond with the verbalizations they made while entering steps into the Geometry
tutor interface. The execution episodes of Subject R, on the other hand, correspond
with the verbalizations he made while reporting his final proof o the experimenter.

This particular analysis is focussed on the planning episodes. The goal of the data
analysis was 1o identify the steps in a complete execution space solution that were
mentioned by the subject during planning?!. The execution space solution for each
subject-problem pair was recorded in a proof tree diagram and each statemant that the
subject mentioned during planning (except the given and goal statements) was circled
on this diagram. Figure 1.2 fllustrates the result of this analysis for the protocol of
Subject R in Table 1.1.

1.4.2.3 Model Predictions. We derive predictions from DC by assuming that a
statement will be mentioned for each schema application. If the schema has a whole-
statement, we predict that this statement will tend io be mentioned. If it does not
contain a whole-statement, e.g., like the WHOLE-PART schemas, we predict the
conciuding part-statement will tend t0 be mentioned. We predict that all other
statements will tend to be skipped. This prediction entails a quite simple assumption
about the verbalization of problem states, i.e., one verbalization per schema
application, however, it provides a good fit to the data. Below we discuss how the
major differance between the predictions and the data might be accounted for by a
slightly more complex assumption about verbalization.

1.4.2.4 Resuits and Discussion. In the twelve subject-problem pairs, less than half of
the intermediate steps were mentioned (37/38) and more were skipped (61/98). The
model predicted that 28 steps would be mentioned and 89 skipped. Tables 1.3 and
1.4 show the data for each subject-problem pair and will be discussed below {note that
Subject R, Problem 7 is in both tables). Of the 29 steps that DC predicts will be
mentioned, 23 were actually mentioned and only 6 were not. Of the 69 that DC
predicts will be skipped, 55 were skipped and only 14 mentioned. A Chi square test
-was used to determine whether this distribution could have occurred by chance. The
Chi square value (X2(1) = 30.3) indicates it is unlikely that the model's fit to the data is
~achance occurrence (p « .001). We can take a closer look at the data to see how well
the result generalizes across subjects and problems, particularly since the subjects
are over represented by Subject R and the problems by Problem 7.

The complete execution space solution for the single-problem subjects is the one they entered inlo
Geometry wtor interface. The mutltiple-problem subject R was not forced to indicate all the details of a
Plete execution space solution and thus, to decide what execution steps he skipped, we filled in the

with the shortest execution space path possible.
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TABLE 1.3
Model-data Fit for All Subjects Solving the Same Problem.

Predi nti Predicted Skip
Actually  Actually Actually  Actually

Sbj Prob# Mention Skip Mention Skip

R 7 3 0 3 2

B 7 2 0 1 3

K 7 3 0 1 6

I 7 2 0 1 3

F 7 3 2 3 9

Total 13 2 9 23

Table 1.3 shows the data for all five subjects on Problem 7 and indicates the model
to data fit is not peculiar to Subject R. A Chi square test on the column totals yields
X2(1) = 14.1, p<.001. Table 1.4 shows the data for Subject R on eight problems and
indicates that the results are not peculiar to Problem 7. A Chi square test on the
column totals yields X2 (1) = 22.0, p<.001.

TABLE 14
Model-data Fit for One Subject Solving Eight Problems.

Predicted Mention Predicted Skip
Actually  Actoally Actually  Actually

8§bj Prob# Mention Skip Mention Skip
R 1 1 2 1 1

2 1 0 2 3

3 2 0 0 4

4 1 0 0 5

5 2 0 o 8

6 3 0 1 2

7 3 0 3 2

8 0 2 1 9
Total 13 4 8 34

If the model fit perfectly, the totals for columns two and three in the Tables would be
ro. The predictions are most deviant from the data in column three — the subjects
mentioned fourteen’ steps that were predicted to be skipped. Eleven of these cases

¢ situations where the subject must use more than one part-statement in order to

e a schema. In such situations, subjects often mention one or more of these part-
ements. For example, in planning a solution to Problem 3, part-statements ZADB =
CDB and/or ZaBD=cBD might be mentioned because both are needed to prove the
ONGRUENT-TRIANGLES-SHARED-SIDE schema. To account for such situations our

fiding the third column totals from Tables 3 and 4 yields seventeen. However, since subject R,

!?méz appears in both tables, we need to subtract three from sevenieen to get the proper overall fotal
een.
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simple model! of verbalization, namely, “one step mentioned per schema”, couid be
elaborated to predict that extra verbalizations will tend to occur for schemas which
require more than one part-statement to be proven. This more complicated mode! of
verbalization would only provide a slightly better match to the data. While the number
of misses (column 3} would be reduced by eleven, the number of {alse alarms {column
2) would be increased by six. The increase in false alarms results from the fact that
subjects occasionally skipped part-statements the alternative model of verbalization
predicts they should mention.

Other reasons why the predictions do not exactly fit the data include: 1) subjects
may fail to mention an inference step for some model-unrelated reason, for example,
because they momentarily forgot the experimental instruction to think aloud; 2)
subjects, especially teachers, may feel inclined to explain themselves and thus,
immediately report intermediate steps that support a leap of inference but were not a
part of it; or 3} subjects may be at a different stage of expertise than DC by either a)
being behind, having not yet acquired certain configuration schemas, or b} being
ahead, having acquired larger configurations than the ones DC uses. A potential
instance of (3b) may explain the 2 steps in Subject R's solution to Problem B (see
Figure 1.1) that he skipped though we predicted he would mention them (see column
two of Table 1.4). in this case, it appeared that the subject used a diagram
configuration that combined two of DC's and thus was able to skip extra steps that the
current version of DC cannot.

1.4.3 Forward Inferencing and Completion by Exhaustion

Of the eight problems Subject R solved, he solved five by a purely forward search
(problems 1, 3, 4, 5, 8 in Figure 1.1}, one by a forward search that was guided by the

- goal (Problem 2), and two using some backward inferances (problems 6 and 7). By
pure forward search, we mean that the problem solver did all of his reasoning without
using, and often without reading, the goal statement. The five purely forward solutions
were on problems that tended 1o be easier for him in the sense that he solved them in
less time. Only one of these five took longer than any of the other three.

~ One somewhat peculiar and interesting aspect of Subject R's forward reasoning
was that on a number of the simpler problems he was able to decide he had finished
he proof before reading the goal. For instance, while solving Problem 5 he said, “l
didn't even look at the goal but I've got it”. At some point in solving these problems he
_knows everything he can about it. As he says while solving Problem 3, “we can
etermine anything from there” (see Table 1.1). ltis as if he exhaustively searches all
ossible forward inferences. But, an exhaustive search of the execution space for a

fticular problem is unlikely given its typical vast size ~ particularly since algebra
nferences could chain on infinitely. On the other hand, the size of the diagram
configuration space for these problems is quite smail. In fact, it is bounded by the
umber of plausible diagram configurations which appear in the problem diagram.
hus, it seems that Subject R is able to stop his forward inferencing and conclude he
ane when he has proven (or considered) all the plausible configurations.

Larkin, et. al. (1980a) describes physics experis as working forward on simpler
ems where they are relatively sure that “solving all possible equations will lead

ly to a fult understanding of the situation, including the particular quantity they are
d for.” This description provides a good characterization of Subject R if we simply
ace "solving all possible equations” by “applying ail possible configuration
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schemas”. One difference, though, is that physics equations typically correspond with
one step in the solution of a physics problem, while diagram configurations
correspond with multiple steps in a geometry proof. This is particularly important since
the execution space of geometry is so large. Without the chunking provided by
diagram configurations, it seems unlikely that a working forward strategy could work
on all but the simplest geometry proof problams. Subject R's ability to purely work
forward on relatively difficult problems as well as his ability to recognize he is done
before reading the problem goal are further evidence for the DC model.

1.4.4 DC's Limitations

We discuss DC's limitations both in terms of how the computer simulation could be
extended to be 2 more complete and accurate model of geometry expertise and in -
terms of what situations cause trouble for DC's particular problem solving approach.
The computer simulation could be made more complete by adding procedures 1) to
refine and execute the abstract plans DC currently creates, 2) to determine when and
where constructions are necessary, 3} o integrate diagram parsing and schema
search, and 4) to draw diagrams from general geometric statements.

1.4.4.1 Pian Execution. A model of plan execution would involve finding solutions,
gither by retrieval or by search in the execution space, to the series of shont
subproblems that resuit from planning. The majority of these subproblems are only
one or two execution steps long. The longer subproblems are algebra proots of the
steps skipped by the WHOLE-PART schemas. These proofs share the same general
structure and experts do them by retrieval for the most part. Even if the solutions to
these subproblems are done from scratch, they are small enough that they can be
easily soived by search in the execution space. Adding procedures for doing search
in the execution space would have the additional advantage of providing a way 1o

- perform certain types of algebra inferences that do not correspond with any of DC's
current diagram configurations. These inferences often involve the pairing of two
different types of configurations. For example, the RIGHT-TRIANGLE and the ADJACENT-
COMPLEMENTARY-ANGLES configurations (see Figure 1.4a) can be paired to form an
equation between the two non-right angles of the right triangle and the two adjacent
complementary angies. We could supplement DC with such kinds of paired-
configurations (as in Figure 1.4b) or, alternatively, the execution space search
_component could be used to discover such pairings.

4.4.2 Constructions. The computer simulation could also be made more compiete is
-by adding procedures to perform “constructions”, that is, the drawing of auxiliary lines
I a problem diagram to provide new inference possibilities. Currently DC is not
capable of performing constructions and thus, cannot solve the class of geometry
roblems which require them. However, we feel that DC is particularly well-suited for
dding a construction capability. The major decision points in solving proof problems
hich may require constructions are 1) deciding when a construgtion might be
eded, and 2) deciding what construction to introduce. Typically, geometry systems
ttempt to perform constructions only when other methods appear to be failing. Since
diagram configuration space for any particular problem is relatively small

pared to the execution space, DC could quickly and definitively determine when a
nstruction is necessary by exhaustively searching this space. The task of proposing
entially useful constructions could be performed in DC by completing
tiigurations that partially match images in the diagram.
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1.4.4.3 integrating Diagram Parsing and Schema Search. The computer simulation
could be made more efficient and more accurate as a model of human problem
soiving by integrating the diagram parsing and schema search processes that are
currently performed in separate stages. Instead of doing all of the diagram parsing
ahead of time, it should only be done on demand when the system is focussed on a
part of the diagram which hasn't been parsed. Initially, the encoding of the problem
given and/or goal statements could provide a focus of attention on a particular part of
the diagram that involves these statements. DC could parse this portion of the
diagram in terms of the configurations that appear there. Later, any new pan-
statements proven via schema search could shift the focus of attention to other paris of
the diagram which could be similarly parsed. What remains to be defined is the range
* of attention, that is, how much of the diagram should be parsed at one time.

integrating the parsing and schema search would make DC more efficient in cases
where the diagram contains over-speacialized figures, that is, configurations that look
true, but do not follow from the problem givens. In such cases, the current diagram
parsing process instantiates configuration schemas that will never be used in problem
solving. For example, the line GH in Problem 7 turns out to be irrelevant to the solution
- there is no given information that bears on it. However, since it appears parallel to
fine AB, the diagram parser instantiates numerous schemas that correspond with
apparent relationships like AGCK & AHCK, 1S0S ACGH, AB || 64, and 61 L cp. Without
line GH the diagram contains 15 schema instances — with GH it contains 28 more. In
the process of schema search these schemas are never used, so the work of
instantiating them is wasted. If diagram parsing was done on demand, however, this
extra work would not be necessary.

1.4.4.4 Diagram Drawing. While over-specialized problem diagrams can cause a
slight amount of axtra work, they do not cause DC to fail on problems. However, if the
diagram is improperly drawn, that is, it does not correctly represent the problem
givens, the current simulation will not be able to solve the problem. For example, if the
line BD in the diagram for Problem 3 did not appear perpendicular to the base, DC
would not instantiate the PERPENDICULAR-ADJACENT-ANGLES schema and thus, could
not solve the problem. One way to extend DC to deal with such diagrams is to allow it
to consider configurations beyond those which are apparent in the diagram, like
PERPENDICULAR-ADJACENT-ANGLES in the example above. An alternative involves
following the standard classroom wisdom which suggests that such diagrams should
‘be redrawn. In particular, we could extend DC to deal with inaccurate diagrams by
adding a diagram drawing facility that could draw diagrams to accurately reflect a
problem's givens.

1.5 COMPARISON WITH PREVIOUS GEOMETRY EXPERT SYSTEMS

ecmetry theorem proving models have been developed by numerous researchers,
st with primarily Al concerns (Gelernter, 1963; Goldstein, 1973; Nevins, 1975) and
least one, besides GTE, based on human data (Greeno, 1978). We make
Omparisons with Gelernter's modal because it was the first, Nevin's modsl because it
 the most powerful system we are aware of, and GTE and Greeno's model because
hey were based on human data.
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1.5.1 Gelernter's Geometry Theorem Proving Machine

Gelernter's model was the first Al model of geometry proof problem solving and it
worked by performing a backward heuristic search in the execution space. The use of
the execution space puts the model at a disadvantage that could only be overcome if
the heuristics in Gelernter's model make up for the power gained by the abstract
nature of the diagram configuration space. However, this is not the case. The major
heuristic of Gelernter's model was to reject backward paths when they became
implausible in the diagram. Since only plausible configurations are considered by
DC, these backward paths that Gelernter's model rejects are not even in the diagram
gonfiguration space for a particular problem. Thus, they are rejected implicitly without
ever being considerad.

Gelernter mada no claims about modeling the inference-by-inference behavior of
human problem solvers. And even at a more descriptive level, his model's emphasis
on backward reasoning is inconsistent with the opposite forward reasoning emphasis
of human geometry experts. In addition to Subject R's clear forward reasoning
preference, a much larger proportion the other subjects inferences were forward rather
than backward.

1.5.2 Nevins' Model

Nevins (1875} presents a geometry theorem-proving program which is probably more
effective and efiicient than any other geometry model. His major emphasis was on
structuring the preblem space of geometry such that a predominantly forward
reasoning strategy could be effective. He claimed that human experis engage in much
more forward infarencing than backward inferencing. Although he provided no
gvidence and was probably reacting to the purely backward reasoning strategy of
most expert systems at that time, it is interestingly that he made this claim well before
empirical evidence came out verifying his intuition in physics problem solving (Larkin,
-et. al., 1980a), medical diagnosis (Patel & Groen, 1986), and now in geometry. The
‘success of forward inferencing in Nevins' model is made possible by the way in which
he structured the problem space. Unfortunately, Nevins is not very clear about the

.exact structure of this problem space. The structure is embedded in the processes he
lescribes.

. However, the problem space implicit in his description is much more like the
lagram configuration space than the execution space. Because the model only
ecognizes six predicates (LN=line, PR=parallel, PRP=possibly parallel, RT=right
&, ES=equal segment, and EA=equal angle), it is effectively working in an abstract
roblem space. It ignores the distinction between congrusnce and measure equality
well as the distinction between midpoint and bisector predicates and their
responding equality predicates. The model makes inferences using a number of
radigms”™ which are cued by certain features of the diagram and which make
nelusions in the form of the predicates. These paradigms share many
aracteristics with diagram configuration schemas: 1) they are cued by the diagram,
ey can make multiple conclusions, and 3) they are often macro-operators, i.e.,
able of inferences which require multiple steps in the execution space. However,
are embedded in complex procedures within Nevins' model and are not clearly
uniformly represented like diagram configuration schemas are, Nevins' model _
Ot use appearances in the diagram as DC does to create candidate schemas.
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Although he did not present it this way, the success of Nevins' model can be
considersed further evidence for the computational efficacy of abstract planning in
geometry. What the DC model adds is an explicit and uniform representation which 1)
makes clear why Nevins' mode! worked and 2) makes clear how it could be extended,
say, by adding diagram configurations for circles. An important side-effect of DC's
explicit and uniform representation is that it is teachable. Also, in addition to DC’s
computational advantages, we have provided empirical evidence that human experts
solve problems like DC.

1.5.3 The Geometry Tutor Expert System

The Geometry tutor expert system {GTE), as described in Section 1, was designed as
a model of ideal student problem solving to use as a component of an intelligent
tutoring system. The system works in the execution space and uses a best-first
bidirectional search strategy. To be successful in the otherwise intractable execution
space, GTE uses heuristics to guide its search. These heuristics were designed to be
psychologically realistic and consistent with the ACT* theory of cognition (Anderson,
1983). The general idea behind heuristics in ACT" is that student problem solvers
learn various contextual features that predict the relevance of an inference. These
contextual features are incorporated in the left-hand sides of the production rules and,
in GTE, are either features of the problem diagram, previously established statements,
orgoals. As an example consider the diagram of Problem 7 in Figure 1.1. Although
one can immediately infer GK=GK and CD=CD by the reflexive rule, only the latteris a
sensible inference that good students make. According to GTE this is because good
students have learned that one situation where the reflexive rule is useful is when the
segment is a shared side between two triangles that might be congruent. Thus, GTE
has a rute of the form: ,

IF there are plausibly congruent triangles ACD and BCD,
THEN conclude CD=CD using the refiexive rule.

GTE has a large set of such rules some of which reason forward from the givens of
a problem and others which reason backward from the goal. Each rule has an
aptness rating which reflects how likely it is to be useful. For instance, a varant of the
le above which tests whether there is a goal to actually prove the two triangles
congruent has a higher aptness rating than the rule above which in tum has a higher
aptness rating than a rule which simply suggests that any segment is congruent to
tself. These aptness ratings correspond with production strengths in the ACT* theory.

" GTE provides a reasonably good model of student problem solving and has the

dvantage of being embedded in a unified theory, i.e., ACT*, that provides an account

f many other cognitive tasks. However, from a computational point of view, the model

ttze.disadvantage that it often gets bogged down in fruitiess search while

ttempting difficult problems, especially ones where algebraic inferences are required.

addition, there is no systematic way to assign aptness ratings to rules so extending

e model becomes increasingly difficult. From an empirical point of view, GTE's
blem solving approach does not correspend with the abstract planning approach

we observed experts using.

v Greeno's Perdix

N0 Used verbal report data from geometry students as the basis for the design of a
Mmetry theorem proving model called Perdix (Greeno, 1978). Like GTE, it is more
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accurately characterized as a model of geometry students rather than geometry
experts. Unlike Nevins, Greano's goal was not so much to build a powerful problem
solving model, but rather to capture the problem solving behavior of geometry
students. In relation, our goal in building DC was to capture the problem solving
behavior of geometry experts so as to have a model which is not only a powsrful
problem solver, but also solves problems in a way that can be profitably taught to

students.

Perdix used a mixture of execution space operators and more abstract macro-
operator-like operators. With respect to algebraic reasoning, Perdix contained
operators which are essentially the same as DC's whole-part schemas (Greeno, 1983)
and thus, could skip over the details of aigebraic proots. However, with respect to
geometric reasoning, Perdix operators appear to have been procedural encodings of
geometry rules, that is, execution space operators. In the empirical research
associated with Perdix, Greeno made a couple of observations which are particularly
notable in relation to DC. The first concerns the use of perceptual processing in
geometric reasoning and the second concerns a useful type of non-deductive or
“indefinite” reasoning that both students and experts appear to engage in.

1.5.4.1 A Physical Distance-Reducing Heurislic. The first observation is the way in
which good students appear to use a visually-based heuristic to guide their selection
of appropriate inferences in a certain class of “angle-chaining” problems (Greena,
1978). These problems are comman in the parallel-line lessons of geometry curricula
and typically involve sets of parallel lines, for example, two sets of two parallel lines
forming a parallelogram on the inside. Students are either 1) given the paraliel-line
relationship(s) and the measure of some angle and asked to find the measure of
another angle or else 2) given only the parallel lines and asked to find a relationship
between two angles. In either case, the problem usually involves finding some other
~angle which connects the two angles in question via the transitivity rule. Although

- these problems typicaily contain numerous angles to choose from, Greeno observed

- that students are fairly regular (and accurate) in their selection of this “chaining angle™.
They tend to pick an angle which, in the diagram, is physically between (or close fo it)
- the two angles to be connected.

Perdix models this behavior by forming a “scanning line” between the known and
desired angles in the diagram and candidate chaining angles are considered in order
their proximity to this scanning line. This scanning line method is an instance of a
te general method for proposing subgoals by identifying objects that are physically
tween the known and desired objects. The method is based on a heuristic: an
peration which reduces the physical distance between known and desired objects
May also reduce the logical distance between them. Although DC has not been
programmed with such a distance reducing heuristic, such a heuristic might aid DC on

er probiems in identifying diagram configurations which are most likely to provide
ink between known and desired configurations. The protocol data provides no
idence that experts use this heuristic, however, the problems subjects solved were
particularly demanding of such a heuristic.

4.2 Indefinite Goals. A second notable behavior that Greeno (18786) observed of

metry students is that they often engage in the setting of what he called “indefinite
When given a problem, like Problem 5, with a goal to prove two triangles

ent, instead of attempting to prove particular corresponding parts congruent that

part of a particular triangle congruence rule, e.g., side-angle-side, subjects

+
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attempt to prove any of the corresponding parts statements they can. These
statements are indefinite goals because they are not associated with any definite rule.
DC accounts for indefinite goals as they are a natural consequence of the way in
which it applies schemas in backward inferences. In DC, a schema is applied in a
backward inference by making all part-statements desired. In cases where the ways-
{o-prove of the schema require multiple statements, the desired part-statements are
indefinite goals since they were not set in order to achieve any particular subset.

A related type of reasoning is characteristic of certain types of forward inferencing
in DC. In particular, the selection heuristic may chose to apply a TRIANGLE-
CONGRUENCE-SHARED-SIDE schema in the forward direction because a sufficient
number (2) of the schema's part-statements are known. This selection is indefinite in
the sense that these two part-statements may not be the right ones to match any of the
ways-to-prove, Geometry experts also appear to make such indefinite selections. At
some point during Problem 7, subjects R, B, K, and F all considered proving AACD &
ABCD and/or AAKD E ABKD because they had established the congruence of three
corresponding parts but found that they could not since these parts formed the
insufficient angle-side-side combination.

it should be noted that both the Nevin's medel and Perdix {Greeno, Magone, and
Chaiklin, 1979} are capable of introducing constructions into the geometry diagram
allowing them to solve a class of problems that DC cannot as it currently does not have
a construction capability. However, as noted in Section 1.4.4, we feel that DC is
particularly well-suited for adding a construction capability.

1.6 DISCUSSION AND IMPLICATIONS

Previous models of geometry problem solving do not provide an explanation of the
abstract planning abilities of experts. Geomaetry experts can quickly and accurately
develop an abstract proof plan that skips many of the steps required in a complete
-proof. We built a computer simulation of geometry expertise, DC, which models this
abstract planning behavior. DC's planning is based on perceptual chunks called
‘diagram configurations which provide a reliable index to clusters of relevant geometry
cts. To establish the computational advantages of DC, we performed a problem
pace analysis that showed that DC is more efficient than models based on the
xecution space of geometry. in addition, we showed that DC’s particular approach to
bstract planning is much like that of human experts. Making a conservatively simple
ssumption about how DC would verbalize its inferences, we found that the model
0es a good job of accounting for what steps experts mention (and skip) while

eloping an abstract proof plan.

= We now turn 1o a discussion of how these findings relate to or might inform other
I8sues in cognitive science. In particular, we discuss: 1) how these findings bear on
controversy in the human reasoning literature (see Holland, et. al., 1986) between
cific instances, mental models, schemas, and natural logic rules as the
résentational basis for human reasoning, 2) how these findings contribute to the
dy of expertise in general, 3) how these findings fit (and don't fit} within unified

168 of cognition like ACT* and Soar, and 4) how these findings might be applied
pIove geometry instruction. Chapter 2 follows up on this last point by focussing
Ow these findings have been used in the development of a 2nd generation

'gent tutoring system for geometry.
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1.6.1 The Raw Material of Reasoning: Instances, Models, Schemas, or
Rules ‘

Holland, et. al. (1886) discuss four alternative theoretical views on human reasoning
that have grown primarily out of the empirical research on syllogism problems and
Wason's (1966) selection task. These views present different hypotheses about the
nature of the basic material with which we reason. They are listed below in order from
a view of reasoning knowledge as extremsly specific to a view of knowledge as
extremely general.

+ Specific :‘ss:aﬁs;es : Reasoning proceeds by recalling specific instances of
past reasoning events which indicate an appropriate conclusion (see Griggs
& Cox, 1982).

+ Mental models: Reasoning is performed by domain-independent
comprehension procedures that construct a concrete model of the problem
situation from which conclusions can be read off (Johnson-Laird, 1983; Polk
& Newell, 1988).

» Pragmatic reasoning schemas. Reasoning is performed by the application of
pragmatic reasoning schemas which are abstractions of past reasoning
svents {Cheng & Holyoak, 1985).

« Natural logic rules: Reasoning proceeds by the application and chaining
fogether of abstract rules, much like the formal rules of logic, to deduce a
conclusion (see Rips, 1983; Braine, 1978).

While the knowledge elements of the specific instance and mental model views are
‘more concrete and declarative in nature, the knowledge elements of the pragmatic
reasoning schema and natural logic rule views are more abstract and procedural. in
-the first two views, the knowledge elements are descriptions of concrete objects and

- situations in the world which must be interpreted to derive actions or conclusions. In
ha latter two views, the knowledge elements do not correspond to any particular
ituation or set of objects, but to large categories of situations and they prescribe an
action to be performed or conclusion to be made in that general situation.

- The question we wish to pursue is how our growing understanding of reasoning in
eometry fits within the spectrum of these four alternative views of human reasoning.
agometry reasoning, as characterized by DC, is least like the natural logic rule view.
C's schemas are specific to geometry and thus, are quite unlike the general natural
ic rules. On the other hand, DC's schemas are not specific enough to equate them
h the specific instance view. In general, neither students nor experts solve

ometry problems by simply recalling past experiences of solving them.

are left with the two intermediate views. Because the distinction between themn
mewhat subtle we describe them in more detail. The mental model approach is of
mediate generality in that it uses general language abilities to construct a model
rent) of the problem statement, but the effectiveness of this model is limited by the
aner's specific knowledge of the language of the domain. The pragmatic

oning schema view is intermediate in that reasoning is based on knowledge

Nts (schemas) which are gensral enough to apply 1o numerous problem types
'mains, but are not as general as formal logic nules which are applicable in any
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domain. One implication of the difference between these approaches is that the
mental model approach explains reasoning errars in terms of working memory
failures, while the schema approach explains them in terms of negative transfer - i.e.,
the mapping of a schema to a situation where the schema-based inference is incorrect

(Holland, et. al., 1986},

DC has similarities with both the mental model and pragmatic reasoning schema
view. It is similar to the mental mode! approach in that it uses the problem diagram as
a specific referent or model of the abstract problem statement indicated by the givens
and goals. Many features of this model are usually too specific to be raelevant, for
example, the particular lengths of segments. However, other specifics of the model
can be important as they can provide a cue to relevant inferences, for example,
congruent-looking triangles can cue an inference to prove them congruent. A concrete
model has the advantage of making important features or relationships clearly
apparent (visible in this case) whereas they are only implicit in abstract statements. In
addition, the cues from the model have the effect of allowing the problem solver to
ignore lots of potentially applicable but irrelevant logical knowledge. A model building
procedure like the one Johnson-Laird proposes is not necessary since the diagram
provides a ready-made modell, According to the mental model approach, what is left
for the problem solver 1o do is properly annotate the model and read-off the
conclusion. This is essentially what we propose experts do — they annotate the
diagram, on paper or in their mind's eye, by noting established relationships.

However, the annotation process is not as straight-forward as it is in other problems
the mental model approach has been applied to. Rather, it involves fairly complicated
logica! inferences, including, for example, the checking of ways-to-prove. This
inferencing requires the abstract geometric knowledge which is part of the DC
schemas. This knowledge is more like pragmatic reasoning schemas in that it is
- applied procedurally and it appears to be acquired as abstractions of past geometry
problem solving experiences.

Although the four views can be posed as competing hypotheses, it is likely that

~ human reasoning in general contains elements of each. While the DC madel lends
- support for the use in geometry of a combination of the mental model and pragmatic
reasoning schema approaches, neither approach by itself is sufficient.

'}.6;2 Contributions to the Study of Human Expertise

1.6.2.1 What's behind Expert's Forward Reasoning Ability? One claim that has been
made about human expents is that they show a greater tendency than novices
{especially on easier problems) to work forward from the givens of a problem rather
than backward from the goal. This result has been observed in physics word problems
{Larkin, McDermott, Simon, & Simon, 1980a), in classical genetics word problems
{Smith & Good, 1984), and in medical reasoning {Patel & Groen, 1986) by comparing
@ problem solving behavior of experts and novices. Although the comparisons were
done between different subjects, the invited inference is that as a person acquires skill

While many geometry proof problems given in classrooms include a diagram, it is not uncommon fo

e proof problems withoul a diagram, for example, the problem in figure 2 could be stated as “prove that
the perpendicular attitude of a triangle bisects the angle, it also bisects the base™. Such problems are
ally Solved by drawing an appropriate diagram, a concrele moded of this abstradt statement, and then
eeding as usual. In this case, the problem solver is constructing a mantal model,
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in one of these domains their problem solving strategy will tend 1o shift from working
backward to working forward. To observe this shift within the course of skill
acquisition, Sweller, Mawer, and Ward {1983) developad a toy domain, using three
equations from kinematics, where subjects could become “experts” in a relatively short
period of extensive practice {77 problems). They found the expected shift as subjects
worked forward on significantly more of the final problems than they did on the initial

prablems.

in geometry we have observed an expert (Subject R) exclusively working forward
on a numbar of the simpler problems we asked him to solve. This ability to essentially
solve certain problems without looking at the goal Is an ability geometry novices do not
have. We would like to address the issue of how Subject R and experts in general are
able to successiully work forward.

It should be pointed out, first, that this shift to working forward is not characteristic of
all domains of expertise. In some domains the given information is inadequate to
successfully solve problems by forward search. Jeffries, Turner, Polson, and Atwood
(1981) showed that expert programmers do not work forward from the problem givens
{i.e., the programming language primitives), rather they work backward from the goal
information (i.e., the program specifications). The shift to working forward appears tc
be characteristic of deductive domains, like equation chaining or proof domains,
where the given information is quite rich and uncharacteristic of design domains, like
programming, where the given information is poor.

In domains where working forward can be successfully performed, it should not
surprise us that learners adapt toward using it more often. By working forward,
problem solvers can write down inferences as they make them and relieve the memory
burden of storing previous solution steps. Backward or bidirectional search, on the
other hand, demands that the problem solver encode and integrate more information
as well as remember intermediate goals. Sweller (1988) makes similar arguments
and presents a computational model and experimental evidence to support them. The
upshot is that if a learner can develop the ability to successfully work forward, she ¢an
alleviate some of the extra working memory burden required by a backward strategy.

- Sweller (1988) also proposes an explanation for expert's ability to successiully
work forward. He suggests that experts use schemas to classify problems into
categories that carry implications for appropriate moves to make. Hs defines a
chema as “a structure which allows problem solvers 10 recognize a problem state as
elonging to a particular category of problem states that normally require particular
moves,” The diagram configuration schemas of the DC model fit Sweller's definition.
They allow the categorization of sub-probiems based on recognizing prototypical
mages in the problem diagram and the retrieval of the relevant sub-proof.

The key point is not so much that experts will necessarily prefer working forward.
Rather, it is that as a result of the their superior skill, experis are capable of
Successfully working forward without recourse to backward reasoning. Knowledge in
he form of schemas is what aliows them to do so. However, schemas alone are not
ough. The schemas must be large enough or the problem small enough so that

Y reduce the search space sufficiently for forward reasoning to be effective. We
Ve seen how DC's schemas make the search space of even relatively difficult
oblems quite small, for example, the forward search space of Problem 7 is only 8
hemas {see Table 1.2). Still, all of our experts did some backward reasoning on
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Problem 7. It was only on simpler problems, like 3 and 5 with only 3 relevant schemas,
that Subject R performed a purely forward search.

1.6.2.2 Perceptual Chunks and Problem Solving Performance. QOne of the more robust
results regarding expert-novice differences is the enhanced memory of experis for
problem-state displays. This difference has been established in a variety of domains:
chess (De Groot, 1968}, electronic circuits (Egan & Schwarlz, 1979), baseball {Voss,
Vesonder, & Spilich, 1980}, computer programming (Jeffries, Turner, Polson, &
Atwood, 1981), and algebra (Sweller & Cooper, 1985). In the earlfiest study of this
type, it was shown that chess masters can remember realistic board positions much
better than chess novices can (De Groot, 1866). This result does not arise from any
innate perceptual or memorial advantages experts might have, rather it arises from
their extensive chess experience. Expens are no better than novices at remembering
boards with randomly placed pieces.

While these recall abiiities are correlated with game playing skill, it has yet to be
decisively established whether they are a necessary part of game playing skill or
whether they are merely a side-effect of spending lots of time staring at a chess board.
The theory behind the recall results is that subjects perceive the board in terms of
prototypical configurations of pieces, “chunks”, and that experts’ chunks are made up
of more pieces than those of novices (Chase & Simon, 1973). Chase and Simon have
suggested that experts associate appropriate chess moves with these chunks and
Simon and Gilmartin (1973) have a model of chess perception. However, a mode! has
yet to be written which is capable of both performing the recall task and playing chess.
At the same time, the proposal that experts associate moves with these chunks has
received criticism (Holding, 19886).

The DC model is a step towards establishing a detailed theoretical connection
between perceptual chunks and problem solving performance. The diagram
configurations of DC provide a ready-made theory of perceptual chunks in geometry.
We have already seen that these perceptual chunks provide the basis for expert
problem solving performance. It would not be difficult to model superior problem-state
recall in geometry by chunking problem diagrams in terms of diagram configurations.
Thus, it appears that the appropriate knowledge representation is in place in DC to
.model both problem-state recall and problem solving skill in geometry. Implementing
4 recall component and replicating De Groot's findings in the domain of geometry are
tasks for future research.

_Turning back to chess, DC's use of diagram configurations for abstract planning

ight be the appropriate analogy for an integrated chess model. Rather than cueing

articular moves, chunks in chess may be more effectively thought of as problem state

abstractions which provide the basis for an abstract problem space in which players
an plan and evaluate multiple-move strategies.

6.3 DC's Relation to Comprehensive Theories of Cognition

1972 Allen Newell gave his well known “20 questions™ talk {(Newell, 1973) in which
argued that to avoid spinning our wheels in cognitive science research we need to
N to integrate local hypotheses and domain models into global theories that

unt for cognition across a wide variety of tasks. Creating such comprehensive

s has now become a major research effort (Anderson, 1983; Newell, 1980;
Son-Laird, 1983; Holland, et. al., 1986). In this section we try to place DC in terms
0 of these theories, ACT* (Anderson, 1983) and Soar (Newell, 1990). We
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address the issue of whether the mechanisms of probiem solving and learning in
these theories can account for expert geometry problem solving as modeled by DC.

Because both ACT" and Soar use a production rule representation of knowledge,
our first challenge is to find a way to express DC's schemas as production rules in
such a way as to not change the resulting behavioral predictions. Consider the
TRIANGLE-CONGRUENCE-SHARED-SIDE schema in Figure 1.3. This schema can be
represented as 6 production rules whose left-hand sides correspond to the 6 ways-to-
prove of the schema and whose right-hand sides contain 5 actions which correspond
with the 5 part-statements of the schema. A similar translation could be made to
express backward schema application in terms of productions. Mote that these
production rules are macro-operators with respect to the execution space of geometry
in that they have the effact of numerous execution space operators.

Is anything lost in translating schemas to productions? In terms of problem solving
behavior the answer is probably no. However, ancther question we need to ask with
respect to the ACT” and Soar is whether the particular productions that correspond
with DC's schemas could resuit from the learning mechanisms of these theories. This
question is more problematic. The clusters of productions corresponding with DC's
schemas organize the formal rules of geometry in a particular and efficient way. ltis
not clear how the production rule learning mechanisms in either ACT* or Soar could
arrive at such an organized set of productions.

These theories essentially view skill acquisition as involving two phases:
knowledge acquisition and knowiedge tuning. In the knowledge acquisition phase,
the learning system uses information about the problem domain, e.g., problem
descriptions, problem constraints, example solutions, etc., to build some kind of basic
problem space. In geometry, this would involve acquiring the formal rules of geometry,
that is the execution space operators, through instruction and examples. In the
knowledge tuning phase, the basic problem space is elaborated through problem
solving practice so that the system becomes more effective and efficient. Much of the
- research on skill acquisition in ACT" and Soar has focussed on this second
knowledge tuning phase. The basic approach of these theories to knowledge tuning
$ a process of reducing the number of productions required to perform a procedure —
ssentially both use a type of macro-operator creation mechanism in which
onsecutively applicable productions or operators are composed into a single
roduction or macro-operator?.

-~ There are both empirical and computational reasons to doubt that DC derives from
reating macro-operators of the execution space operators. First, the step-skipping
sgularity we observed is an unlikely consequence of this approach. Although ACT*
nd Soar have some stipulations on the appropriate context in which macro-operators
are formed, there is little in them that indicates which sequerices of consecutively
applicable productions are more likely to be composed than others. Thus, we would
expect any regularity in the kinds of steps that would be skipped in an abstract

_Yt? cut off a potential confusion based the distinction in Soar between operators and productions, we
1 ike to make clear that when we use “macro-operator” in reference to Soar, we are nol referring fo
fmbination of Soar operators into macro-operators — Soar has no direct mechanism for doing this.
Br, We are tatking aboul the chunking of Soar productions into bigger productions.
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problem space of composed execution operators. However, such a regularity is
exactly what we pbserved of subjects.

To be more precise both theories stipulate that macro-operator formation occurs
within a goal structure, that is, macro-operators are formed of consecutive productions
applied to achieve-the same goal. Thus, the clustering of productions into macro-
operators will reflect the organization of a problem solver's goals and subgoals and to
the extent that this goal structure is consistent across many problems, a step-skipping
regularity could emerge. However, it appears more likely that marco-operator-like
knowledge in geometry is not primarily organized around goals but is organized
around objects and aggregations of objects in the domain. According to this view,
DC's schemas are not really macro-operators in the sense of being derived from
pxecution operators. Rather, they derive from perceptual chunking of domain objects
and they merely bare a macro-operator relation with execution space operators.

A second reason to question the macro-operator learing approach comes from
evidence in the verbal reports that in the process of executing an abstract pian,
subjects could not always immediately fill in the steps they had skipped during
planning. For example, in Problem 7 subjects would plan to prove the goal from ZaAnc
= £BDC, apparently using the PERPENDICULAR-ADJACENT-ANGLES schema. During plan
execution, some subjects did not immediately know how to justify the link between
these two statements - thay attempted an algebra proof or searched the list of
available geometry rules we provided. However, if they had learned this schema by
composing execution space operators, that is, the very operators that they needed at
this point, we would expect that these operators would be readily available, Since
these execution operators remain necessary to execute proof plans, there is no reason
why they would be forgotten in the course of skill acquisition. It appears that experts’
knowledge of the macro-operator-like schemas is occasionally stronger than their
-knowiedge of the corresponding execution operators. This evidence is inconsistent
‘with a view of the schemas deriving from the execution operators — provided, as is the
tase here, that the exacution cperators are still necessary to solve problems.

_ Finally, there are computational reasons to question macro-operator explanation of
tep-skipping. Recall the macro-oparator characterization of the TRIANGLE-
ONGRUENCE-SHARED-SIDE schema given above. The collection of such macro-
perators for each schema, call it 5, is a restricted subset of the space of possible
_macro-operators. S is restricted in two ways. First, S does not contain any of the
ossible macro-operators which could make inferences between statements which are
vhole-statements of schemas, for example, it doesn't contain an operator that could
fer parpendicularity directly from triangle congruence in a problem like Problem 3.
8cond, S does not contain any of the 2, 3, or 4 action macro-operators that would be
carned on the way to a 5 action macro-operator like the one corresponding with the
IANGLE-CONGRUENCE-SHARED-SIDE schema. To achieve DC's simplicity in search
ntrol and match to the human data, a composition mechanism would need to
vent a proliferation of unnecessary macro-operators. It is not clear how this
triction could be implemented in ACT* or Soar. -

ne might consider whether this restriction could be achieved within the Soar

tecture by having a hierarchy of problem spaces corresponding with the desired
nization. Howaever, this approach begs the question — how would this hierarchy
arned in the first place?
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1.6.4 Implications for Geometry Instruction

While the main focus of Chapter 2 is on how DC can provide the basis for an improved
intelligent tutoring system, our improved understanding of geometry problem solving
may also have more general implications for how geometry is taught in the classroom.
On one hand, the DC model is a theory of the internal thinking processes of skilled
geometry problem solvers. On the other hand, it can be taken seriously as new
method for doing geometry proofs which can be explicitly taught in the classroom. In
addition, the organization of knowledge in DC suggests an alternative task-adapted
organization of the geometry curriculum. Typical geometry curricula are organized
around topics and focus on teaching the formal rules of geometry. Alternatively, a
curriculum could be organized around diagram configuration schemas and have the
structure in Figures 1.4a and 1.4b. The formal rules, then, could be taught in context of
how they are used to prove schemas. Such a task-adapted curriculum organization
can help students to remember rules and access them in the appropriate sifuations
(Eylon & Reif, 1984).
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HAPTER 2.
ANGLE: A NEW GEOMETRY LEARNING ENVIRONMENT

utor building is a time consuming task often involving as many as 10 person years of
offort. This chapter reports on ANGLE in a fairly early stage of its development — after
“about 1.5 person years of effot. Our development pace is certainly faster as a result of
 the previous research on the Geometry Proof Tutor (GPT) and the LISP tutor
(Ancierson, Boyle, Corbett, & Lewis, 1990). In particular, ANGLE's tutoring scheme is a
- version of the model tracing approach developed for these tutors. In model tracing
gtudents are tutored by matching their behavior against a cognitive model of
successful and buggy performance in the domain. The most essential difference

" patween ANGLE and GPT is that the cognitive model has changed: ANGLE traces
students relative to the diagram configuration space, while GPT traces students
relative to the execution space.

Yet despite the general contributions of prior research, we basically started from
scratch when it came to designing the specifics of the interface and of the tutoring
strategies and messages. By taking the DC problem solving theory seriously as a
driving force in tutor design, we arrived at a significantly different kind of interface and
a different set of specific tutoring strategies and messages.

2.1 MOTIVATIONS FOR TUTOR DESIGN: FROM DC TO ANGLE

2.1.1 The Implicit Plan Problem

One of the difficulties involved in building an intelligent tutoring system (ITS) is finding
a way to communicate about the thinking that students do between their observable
problem solving actions, We call this the “implicit plan” problem. If aspects of student
planning cannot be reified or articulated by the ITS, it is not possible for the system to
monitor this planning nor provide relevant advice. For example, in data ¢ollected from
GPT, it was found that the better performing students were taking significantly more
time at the beginning of each problem solving step. It appears they were doing some
planning that cannot be represented in the GPT interface and thus, cannot be tutored
by GPT. In contrast, the poorer students were more quickly jumping into a step
indicating, perhaps, that they were not performing the kind of implicit planning that
made the better students’ successful. Because this implicit planning is not
represented in GPT, the system cannot tutor it and thus, the poorer students are left on
their own to discover it.

in support of this interpretation, a common complaint about GPT is that it does not
provide very good global feedback. The feedback focuses locally on the next proot
step the student might take rather than more globally at the next few steps or an overall
plan. Many critics have the intuition that proof ideas can be born at a more global
level. Our current research on geometry experts has identified this more global level
and has characterized it in terms of DC's diagram configuration schemas. Thus,
ANGLE can address the implicit plan problem — we can reify the planning process in
the interface and so, open it up for discussion and instruction.

2.1.2 Reifying Planning: Advantages of a Diagram-Based Method

ANGLE follows from the following instructional philosophy: I you discover a clever
way to solve problems in a domain, you should tell it to students. There are two
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caveats. First, the method must be one that is “humanly tractable”. For example,
although the Simplex method for linear programming is a clever way to solve certain
optimization problems, it is not tractable method for humans. Second, there must be
an effective way of communicating the method that avoids being so complicated that
students spend too much time trying to understand the method itself and too little time
actually learning to solve probiems in the domain,

We can be reasonably certain that DC's problem solving method is humanly
tractable because it appears to be the methed skilled probiem solvers are using. The
next question is whether we can effectively communicate the method to students.
Some ITS designers have addressed the problem of communicating about the
abstract planning occurring above the level at which solution steps are executed.
Examples of the resulting tutoring systems include Bridge (Bonar & Cunningham,
1988}, Gl (Reiser, et. al., 1988}, and Sherock {Lesgold, et. al., 1988). The basic
approach is to develop a command language, usually menu-based and possibly
graphical, which makes this planning level concrete. While such languages clearly
provide a means for communicating about planning, they are at risk of violating the
second caveat noted above. In other words, it is not always clear whether these
- command languages pay off or whether they side-track the student with the extra
burden of learning a complicated language.

For the most pan, we do not need to invent such a command language to reify DC's
abstract problem space. Essentially, it already exists in the form of the problem
diagram. Rather than choosing an operator from a list of geometry rules as in GPT, in
ANGLE students select an operator from a list of diagram configuration icons. These
icons are the building blocks for proofs in ANGLE just as geometry rules were the
building blocks for proofs in GPT.

2.1.3 A Methodology for Theory-Based Tutor Design

In this chapter, we discuss the design of ANGLE and in particular, how its major
. components, the expen, interface, and tutoring component have been influencad by
_ihe cognitive model of problem solving laid out in Chapter 1. The expert component is
the subject-matter knowledge of the tutor, the interface component determines how the
“student interacts with the system, and the tutoring compenent provides the verbal
dvice the system gives the student.

TABLE 2.1
Ways to Communicate a Problem Solving Model in an ITS.

Representations Processes

interface Notations Actions

Tutor Advice Vocabulary Eﬁ?;i;?gw

able 2.1 summarizes a methodology for theory-based tutor design that indicates a
/ 10 translate from a cognitive model of problem solving into design specifications
e interface and tutoring components of an ITS. Given a model of successiful
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students’ implicit planning, one needs to find ways to caffmur;ieate the knowledge
representations and cognitive processes that make up this model.

The interface component provides an implicit form of instruction in that students can
learn through their perception and interaction with it. Thus, one avenue to teaching
the problem solving model is to invent interface notations and actions that reify the
underlying representations and processes of the model. Interface notations should
mirror the model representations such that students can begin to internalize these
representations through repeated perception and use of the notations. Similarly,
interface actions should mirror the model processes such that students can learn these
processes through repeated performance of these actions.

While the interface component provides an implicit form of instruction, the tutor
component provides a direct way 1o instruct students on the representations and
processes of the problem solving model. Both ANGLE's tutoring messages and the
off-line text materials use specific vocabulary to directly articulate the schema
representations used in DC. Similarly, the content and order of ANGLE's hints and
explanations have been designed to articulate the problem solving processes (e.g.,
diagram parsing, abstract planning) incorporated by DC.

The following three sections describe the three major components of ANGLE: the
expert, interface, and tutor components.

2.2 THE EXPERT COMPONENT

2.2.1 Summary of DC: ANGLE’s Expert Component

The expert component is the core of an ITS as its capabilities constrain what can and

cannot be done in the interface and tutor components. Essentially ANGLE’s expert

component is the computer simulation of DC described in Chapter 1. Some

differences in implementation details are described in the following section. Here we

&éfef}%ié summarize the important differences between DC and the expert component of
T,

TABLE 2.2
Differences Between GPTs and ANGLE's Expert Components

Knowledge Strategy
GPT Expert Formal Rules Local Heurnistic Search

ANGLE Expert| Percepts & Concepts Global Planning

See Table 2.2. In GPT's expert component, the knowledge was organized around
 formal rules of geometry. These logical rules appeared as parts of production

€5 that also contained context cues to indicate likely situations in which the logical
would be usefully applied. These productions constitute a bidirectional heuristic
ch strategy that has a focal view in that decisions are only made about next logical
i the proof (sither forward or backward). In contrast, ANGLE's expert component
anized around geometric percepts and associated conceptual knowledge of the
| properties (part-statements) of these percepts. It searches a different problem




39

space that takes a more global view in that planning decisions are made that typically
invoive many steps in the proof.

2.2.2 Efficiency Considerations

This section provides some efficiency related details about how DC is used as the
expert component of ANGLE.

2.2.2.1 Off-line Problem Model Creation. The efficiency of ANGLE is improved by
running DC offline and producing a problem file for each problem ANGLE is going fo
tutor. ANGLE inputs the problem file just before the student begins working on a
particular problem.

it turns out that most of the computation necessary to model student problem
solving (on a particular problem) can be done off-line. This can be accomplished
because of the way diagram parsing and schema search can be decoupled: all of the
diagram parsing is done off-line and only the schema search needs to be done on-
ling. The result of the off-line diagram parsing is a problem file containing a network of
part-statements and schemas. Such a network is illustrated in Figure 1.5. As
discussed in Section 1.3.2.1, this network is a concrete model of the problem space of
a particular problem ~ no more pattern matching of predicates need be done to find
solutions to this problem (or o follow any legal path for that matter). We'll refer to the
network for a particular problem as the problem model. Only constant to constant
matching is necessary for ANGLE to check students’ solution steps, This approach
allows for fast responses to the student actions (< 1 sec) and is a significant efficiency
improvement over GPT as argued below.

There is no loss in generality as a result of this efficlency improvement, ANGLE
can still follow the student along any path of legat inferences whether or not they are
needed to prove the problem goal.

. While the generation of the problem model is done off-line, ANGLE must still do
-some problem solving search when asked to generate strategic advice. This advice is
~given when the student is stuck and is designed to hint at a good next step the student
- mighttake. In the Tutor Component section we describe the nature of the strategic
 advice given, The Expert Component’s role is to identify the best next step the student
ould take within the context of what he or she has already done. ANGLE suggests
nly forward reasoning steps. It determines the best next step by finding a schema
vhich meets to criteda. First, it must be a schema that the student could currently
fove using any of the statements he's already proven or any of the part-statements
ich are consequences of the schemas he’s already proven. Second, it must be the
one of the) schema(s) thatis on the closest path fo the goal. The Expert does a
ackward breadth-first search through the problem model to find this schema. As
ed above this can be done quite quickly, about 1 second. This is both because

ieﬁm models are relatively small and because no pattern matching is necessary to
arch them, '

We decided to tutor only forward inferences and not backward ones. This decision

based on classroom experience with an earlier version of GPT which provided
ard reasoning hints under certain circumstances. The average student found

ey confusing and such hints were eliminated from the tutor so that the current

on of GPT only tutors forward inferences. This issue is certainly worth more

ration, but we wanted to avoid this potential roadbiock with this first instantiation

o
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of ANGLE. (in fact, a new tutoring scheme for ANGLE is currently in the works which
tutors backward reasoning.)

2222 Evaluating Efficiency Improvements. ldentitying which of the possible solutions
the student is working on is somewhat problematic for GPT. ANGLE finesses this
issue by being able to quickly generate potential solution paths on-line. Instead of
trying to match a complex set of student steps against a series of possible solutions,
ANGLE simply finds the shortest path to the goal from the steps the student has
already generated. It gives advice on the next step in this path.

The Macll hardware is about 3 times faster running Common LISP than the Xerox
D-machine running its Inferlisp. However, the efficiency of ANGLE's problem model
makes it even faster. Average problem loading time for GPT is about 35 seconds for
“gasy” problems and about 130 seconds for “hard” problems. in contrast, ANGLE
doesn’t suffer so much on the hard problems: about 10 seconds for the “easy”
problems (about the expected 3 times faster), but only about 13 seconds for the “hard”
problems -- a ten-fold gain largely attributable to the concrete problem model. GPT
response times are about 15 seconds while ANGLE’s are about 1 second. Again, a
gain well beyond the hardware difference.

2.3 THE INTERFACE COMPONENT

2.3.1 Motivation for Interface Component Design

An obvious design principle for a tutor interface is that it should be easy to use and
leam. A less abvious principle has to do with the role of interface as a subtle, yet ever-
present, form of instruction. This implicit instruction comes both in the form of the
notations used in the computer interface and also in the actions allowad by the
interface. A theory-based approach to tutor design can guide the creation of these
interface notations and actions. Notations should be created which mirror the
imporiant underlying representations of the problem soiving model, while actions
should be created which mirror the imponiant underlying processes of the problem
solving model. In this way, students can begin to internalize both the desired
representations as they use the interface notations and the desired processes as they

‘perform interface actions.

2.3.1.1 ANGLE Interface Notations. The ANGLE interface includes a number of
_examples of notations which reify representations in the DC model. The most
‘prominent and impontant are icons for representing the generic schema categories

nd for representing student-selected instances of these schemas (these are
Giscussed below in Section 2,3.2 and illustrated, for example, in Figures 2.1 and 2.3}.
‘These icons provide a concrete image to which students can attach the related
onceptual knowledge about the pan-statements and ways-to-prove. In paricular,
ey reinforce the perceptual character of schemas.

. Following GPT, ANGLE incorporates a graph representation of proofs in contrast to
18 fwo-column format of traditional geometry instruction. (The construction of a proof
aph is described below in Section 2,3.3 and illustrated in Figures 2.3 through 2.12.)
8 proof graph notation reifies the search process:

1) by explicitly indicating how a carrect solution must be a chain of steps
linking the givens to the goal,
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2) by allowing the posting of subgoals as possible future links in the
solution chain, and

3} by explicitly indicating dead end solution attempts which are a
common.part of problem solving {(even for experts).

Foliowing a conventional notation used on paper, ANGLE uses hash marks in the
diagram to indicate part-statements that have been proven. (This is described below
in Section 2,3.2.1, see, for example, the change in the diagram from Figure 2.5 10 2.6.)
These markings reify the equivalence class nature of segment and angie congruence
in contrast to the binary reiationships of the formal notation. In other words, to indicate
that 3 angles are all congruent to each other using the hash mark notation, one can
mark all three with the same marking - the marking serves as a token of the

vivalence class containing all three angles. In contrast, the formal notation requires
three binary statements to represent this situation, for example, 218 £2, £2& £3,

and £1 8 L3,
Finally, as a further aid to the acquisition of schemas, ANGLE highlights a schema
within the problem diagram whenever the mouse passes over the corresponding
schema instance icon in the proof graph. This is intended 1o reinforce the relationship
between the schema and the rest of the diagram. This is a kind of dynamic notation

which cannot be feasibly employed with paper and pencil.

2.3.1.2 ANGLE Interface Actions. The DC theory influenced interface decisions
involving both the type of actions allowed and the grain size of these actions.

Following the major processes in DC, ANGLE interface actions are broken down into
(1) diagram parsing actions, (2) planning actions, and (3) execution actions. The grain
size of parsing and planning actions is designed to emphasize schemas, while the
focus on statements and rules is left for execution actions.

The diagram parsing actions are those done in order to post schemas. As

- described below (Section 2.3.3.1), first the student selects a schema type and then
indicates the lines within the diagram that make up an instance of this schema (see
Figure 2.2). This particular way of constructing a statement, as opposed to the way &
student constructs one in GPT or on paper, is meant to reinforce the relationship
between the schema instance and the problem diagram in which it is embedded.

The planning actions are those done in order to justify schemas and part-
statements. To some extent these actions are more elaborate than those made in a
two-column proof on paper: in ANGLE, the student must explicitly indicate the
premises that lead to a conclusion (that is, by drawing the lines between them), while
in the typical two column proof these links are only implicit. On the other hand, the
planning actions are for the most part less elaborate than those required for a two
column proof. Certain details required in a two column proof can be left out while
constructing a plan. Students can omit a) certain statements usually required in a
mplete proof, for example, the reflexive statement T & TK in the first inference in
gure 2.7, and b) the rules or “reasons” that usuaily appear in the right column of a

o-column proof.

. Any tutor interface (or notational scheme for that matter) is implicitly taking an
Structional stance about what things are hard and/or important to learn and what
gs are not. Three important aspects of the instructional stance taken by ANGLE’s
terface are worth making explicit: (1) learning about the logical linkages between
Toot steps is hard and important, (2) learning the details of proof execution is less
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important and perhaps less hard than learning proof planning, and (3} learning how to
parse geometry diagrams into particular chunks (DC-schemas) is hard but it is
important for successful search in a vast problem space. The first point is shared by
GPT's interface, but not by the two-column notation used on paper. The last two points
are special to ANGLE's interface.

The following sub-sections provide more details on the nature of the ANGLE
interface.
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_ Figure 2.1. The ANGLE interface at the start of a problem.
;3.2 Screen Layout

Igure 2.1 shows the ANGLE screen at the start of a problem. On the upper-left edge
i the window is an icon-menu containing icons used to indicate various schema typss
ell as segment and angle congruence statements (the bottom two). The menu

W it is the mode-menu where the current mode is always highlighted. The Move
10Ge is the default mode as shown in Figure 2.1. The problem givens appear at the
0fton of the window, the problem goal at the top, and the problem diagram at the top-
Just like in GPT, the proof is represented as a graph linking the problem givens to
problem goal. Figure 2.7 shows a complete proof plan, while Figure 2.12 shows
Complete solution after execution.
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The elements of the proof graph include two types of statements: 1) schema
instances, displayed with both the schema’s whole-statement and a miniature picture
of how the schema instance appears in the problem diagram, and 2) part-statements,
displayed in the standard way.

D

Abort Concept
Concept Finished

Rules

Figure 2,2, Selection of a schema statement or “concept” as they
were called to students. This miethod of schema selection is intended o
reify the diagram parsing process.

x3.3 Interface Actions

.3.3.1 Planning Actions. Students enter pianning steps in two sub-steps, statements

must be posted first and then can be justified. To post a schema statement, the student
1s by selecting a schema type from the icon-menu on the left. Next, she mouse-

¢ks on lines in the problem diagram that make up a particular instance of this

hen}a. These lines are highlighted as shown in Figure 2.2. The figure shows the

ection of an instance of the CONGRUENT-TRIANGLES-SHARED-SIDE schema — this

flicular instance is the first step aiong the solution path. After the student mouse-

ks on “Concept Finished”, the schemna statement is posted - that is, it appears on

e ;:reen. The student is then free to drag the statement (using the mouse) into the
 area.
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The student is free to post other statements as they wish. Typically, she will attempt
to justify the statement just posted. To justify a statement, the student starts by mouse-
clicking on Justify in the mode-menu. Next, she mouse-clicks the statement she
wants to justify, in this case aAcCK & ABCK, This statement is highlighted and the
mode-menu switches 10 Select Reasons, and a “Done-Abort” menu appears below
the problem diagram. The new state is shown in Figure 2.3.
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Figure 2.3. Justifying a schema statement. The student is indicating
the intention to justify &ACK £ ABCK. Next, she will select the given
statements as the reasons for this statement.

The student now mouse-clicks on the reasons or statements from which & ACK &
ABCK is justified. In this case, the student mouse-clicks on the two givens, &T & BT
and AK = BK. As she does, lines are drawn from these statements to AACK & ABCK.
finish selecting reasons, she mouse-clicks on “Done Selecting Reasons” in the
manu below the problem diagram. The result is shown in Figure 2.4. The mode

itches back o Move and the student is free move any piece of the proof graph
they've created.
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Figure 2.4. Completion of a schema justification action.

, Posting a part-statement, for example, £BCD & £ZDCA, is analogous to posting a

- schema statement. First, the student mouse-clicks on the angle congruence icon in
the icon-menu (second from the bottom). Then, she mouse-clicks near the vertex of

one of the angles between the two rays that form it, that is, right where one would mark

the angle with a pencil on paper. She does the same for the other angle. At this point,

the screen appears as shown in Figure 2.5.
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Figure 2,5, Creating an angle congruence statement. Note that the
angles are iemporarily highlighted as they are selected — see the
markings at vertex C in the diagram.

- To finish posting ZBCD & ZDCA, the student selects “Statement Finished” from the
menu below the diagram. Now the statement can be dragged into the proof area and
justified. Justifying part-statements is exactly the same as justifying schema
statements. The student selects Justify from the mode-menu and mouse-clicks on
ZBtD £ ¢pca. This statement is highlighted, the mode switches to Select Reasons,
and the “Done-Abort” menu appears. The student mouse-clicks on AACK £ ABCK as
the reason and selects “Done Selecting Reasons”. The result is shown in Figure 2.6.
otice that as a result of proving ZBCD £ ZDCA, these angles are marked congruent in
e problem diagram using the conventional hash marks used on paper.
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: - Figure 2.6. Justification of a part-statement. Notice that these angles
i : are marked in the diagram.
55” ~ Figure 2.7 shows the completion of the proof plan after the addition of schema
- statement aACD € ABCD and part-statement ZADC 2 £BDC.
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Figure 2.7, A complete proof plan.

- 2.3.3.2 Execution Actions. At this point it is the task of the student to execute or fill in
the details of her proof. Proof execution involves adding any statements that were left
out and adding rules to justify the links between statements. To start with a simpie and

more typical example, {1l illustrate the execution of the second planning step, that is,

from &ACK E ABCK to ZBCD 2 £0CA, and then return to the more involved execution
of the first planning step.

Executing the planning step from .aACK £ ABCK 10 Z8CD & ZDCA simply involves
adding the geometry rule that justifies this inference. This rule is “corresponding parts
ot congruent friangles are congruent” which we abbreviate cORRES~-PARTS. First the
student needs to create this rule using the “Rules” icon in the icon-menu. Figure 2.8
shows the result of clicking on this icon - a list of rules appears.
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Figure 2.8, The rule menu is shown on the left, This menu is used
during execution to add rules to justify the links in the proof. )

Mouse-clicking on CORRES-PARTS causes this rule to appear on the screen. Then
the student drags the rule on top of the line connecting AACK & ABCK 10 £BCD
ZDtA,. See Figure 2.9.
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Figure 2.9. A rule is inserted first by placing it over the line in which
it is to be inserted.

_ Toinsern this rule, the student mouse-clicks on Insert in the mode-meny, then
mouse-clicks on the rule, and lastly mouse-clicks on “Done Inserting” in the menu
underneath the diagram. The rule is inserted by taking the line(s} going into the
opmost statement, £ZBcD 8 ZocA, and having it (them} go into the rule, and then
adding a line from the rule to the topmost statement.

.. To execute the first planning inference, that is, the one from A€ & BC and AK £ BK to
AACK £ ABCK, the student must add a new statement — the reflexive statement €K &
CK. This statement is created, just as statements are during planning, and placed
mewhere underneath AACK 5 aBck. Now, rules must be added. Creating the
azm:am: rule from the the “Rules” menu, the student drags this ruie underneath €K &
K Usmg Justify in the mode-menu, the student creates a link from REFLEXIVE to CK
. The result is shown in Figure 2.10.
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Figure 2.10. Adding and executing the reflexive statement TK & CK
in service of executing & ACK 2 ABCK.

. To complete the execution of this planning inference, the student adds the 555 rule
and drags it on top of either of the two lines going into AACK & ABCK. She mouse-
clicks on Insert andthen onsss. Figure 2.11 shows this state.
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B Figure 2.11. Inserting a triangle congruence rule — just before adding
i the extra premise CK & CK.

Now, before clicking on “Done Selecting Reasons”, the student mouse-clicks on EK
5 €K to add it as the third premise of s58. After completing this and executing the
remaining planning inferences, the final proof is done as shown in Figure 2.12.
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Figure 2.12. The final solution in the execution space.

2.4 THE TUTOR COMPONENT

2.4.1 Motivation for Tutor Component Design

While the interface component was designed to reify model representations with
nterface notations and reify model processes with interface actions, the tutor
component was designed to articulate model representations with the vocabulary

used by the tutor and articulate model processes with the explanations given by the
utor,

2.4.1.1 Articulating Mode! Representations, Schemas were explicitly presented to
students in the format shown in Figure 1.3. We decided 1o call schemas “concepts” as
j}is word is much more familiar to most students. In addition to talking about
‘Concepts”, the vocabulary of the schema slot-names, “configuration®, “part-statement”,
d “waysg[a-prove“ are an explicit part of both the tutor advice and the supplementary
materials.

_The content of the feedback ANGLE gives when students make logical errors was
also designed to help students learn the schema reprasentation. This logical error

iback first enforces the constraint (1) that only part-statements of a schema can be
dto prove it. When this constraint has been satisfied the tutor then checks (2} that
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the part-statements the student selected match one of the ways-to-prove. In this way,
students may learn that when trying to prove a schema, they need not consider any
statements besides the pan-statements of that schema. Violations of these constraints
are called a wrong-type error for {1) and either a too-few or too-many error for (2).
These error categories and the corresponding feedback messages are described in
more detail below (Section 2.4.3.2).

2.4.1.2 Articulating Mode! Processes. One straight-forward way of communicating
model processes is through the content of the hints the tutor provides. ANGLE’s hints
for posting a particular schema explicitly direct the student toward diagram parsing {a
key process in the cognitive model}. The hint to post a CONGRUENT-TRIANGLES schema,
for exampie, encourages careful diagram parsing by asking students to count the
triangles in the diagram.

Besides the content of hints, a less obvious way of communicating model
processes is through the order in which hints are given. In other words, the order in
which hints about appropriate problem solving steps are given should correspond with
the order of these steps in the cognitive model. Foliowing through on this design
guideline results in one of the biggest differences between ANGLE and the first
generation GPT.

Consider the situation in Figure 2.13. If a student were to ask for help from GPT at
this point, it would focus on using the corresponding-pars rule to make the inference
from &BCD £ &YZW. The message would be something like “Notice two triangies
which are congruent . Think about what this tells you.” This is not necessarily a bad
hint. But, it lacks a strategic context that might help the student decide which of the six
corresponding pans it might be useful to prove. We've observed students blindiy
foliowing this advice, proving non-essential parts congruent (e.g., LCBD 8§ £2YW),
getting the advice again, proving another set of non-essential parts congruent {(e.g.,
ZcoB £ £zuy), and so on. Eventually, they stumble upon the right corresponding
- parts, in this problem both BT = WZ and £DCA & 2uwzx are useful, and only then will

GPT start giving advice towards proving &ACD £ AXZW.




55

GOAL:  ZADD B LRWY

l FHix F o B e O HEIAN

beod § 4 ZDBA B L w

Figure 2.13. The context for a strategic hint. The next hint will
focus on the selection of the AACD £ AX2ZW schema and only then,
will the hints focus on part-staternents that follow from ABCD &
Avzyl. These hints suggest to select those part-staternents which will
help 1o prove &ACD & AXEY.

. ANGLE approaches this situation in more or less the opposite direction, that is,
from aacD 2 Axzy to the part-statements BT £ WZ and £ZocaA & Zuzx. |f the student
eeds help, ANGLE would first provide schema selection hints (described in Section
2.4.4.1) to encourage her to look in the diagram for triangles that she might prove
Congruent. The student is advised toward posting AACD £ AXZW as an island
subgoal. See Figure 2.14.

~ Next, she should work on finding pan-statements which she can prove from ABCD
£ avzy and which are relevant to this goal. If she has trouble, ANGLE provides part-

atement justification hints (described in Section 2.4.4.3). For example, the most
general such hint would suggest in this situation: “Look for OVERLAPPING concepts.
hat is, iook for a part-statement which appears both in AACD & Axzu andin a

ncept you've already proven.”, -
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Figure 2.14. The needed part-statements have been added. The next
hint will focus on justifying AACD £ AX2W using the proven part-
statements.

Figure 2.14 shows the addition of the nacessary part-statements. I the student has
rouble here, ANGLE would provide a schema justification hint {described in Section
-4.4.2) that would work her toward finding the appropriate premises (0€ & W2, ZDCA &
iz¥, and the given AC & ¥Z) with which to justify aAcD £ axzw.

2.4.2 Tutor Description

ANGLE's tutor compoenent provides two types of advice: 1) feedback on student's
ogical errors, and 2) strategic hints for what to do next in the case the student is stuck
I appears to be floundering. The tutor component calls upon the expert to provide
he basic information from which to generate advice. To help generate feedback, the
xpert is used to check the correctness of student actions. |f the action is incorrect, the
ror is categorized and the tutor gives feedback with respect to the error category. To
help generate hints, the expert is used 1o find a good next-step that the student could
e isr}tthe context of their current solution. The tutor provides advice by hinting at this
-step.

Withif} a particular context, the advice always starts out general, s0 as to maximize
cognitive involvement of the student, and becomes increasingly more specific if the
ent continues to make errors within this context. If the student makes enough
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grrors, at some point the advice bottoms-out by telling the student what they should do
next. ’

Different feedback and hints are required for the three majsi kinds of action in
ANGLE: statement selection (diagram parsing), statement justification, and execution-

justification.
2.4.3 Logical Feedback

2.4.3.1 Feedback for Statement Selection. As mentioned above, feedback is
generated in response to student errors. A statement selection action is in error if the
statement is clearly not a consequence of the problem givens. Given a properly drawn
diagram, that is, one in which the problem givens are true, a student can tell whether a
statement is plausible just as DC does by seeing if it looks true in the problem
diagram. I a student selects a part-statement which is implausible, for example, £G6aK
& £XAD in the problem in Figure 2.12 above, the tutor provides feedback: “if the
diagram is drawn accurately, angles which don't look equal cannot be proven equal.”

When a student selects a schema-statement, it Is checked for types of errors. The
more serious error is the selection of a schema-type which does not appear in the
diagram. In this case, ANGLE responds “This concept does not appear in the
diagram,” A less serious error occurs when the student selects a schema-type which
appears in the diagram, but the lines he picks does not constitute an instance of this
schema.The tutor responds to this error with “The lines you picked do not form this
concept”.

Occasionally a student might select lines which are instance of a schema other
~ than the schema he selected. ANGLE does not currently recognize such a bug, but it

might be useful if it did, so that the tutor could give more reasonable feedback, e.g., “It
looks like you are trying t0 make &ACK £ ABCK. Since these triangles share a side,
* you should select the CONGRUENT-TRIANGLE-SHARED-SIDE concept, not the CONGRUENT-

. TRIANGLE concept.”

2.4.3.2 Feedback for Statement Plan-Justification. Consider problem 7 shown in
Figures 2.1 through 2.12 above. Imagine a student selected aacD £ ABCD first and
tried to justify it with the two givens. This is clearly wrong since AK  BE are not
corresponding parts of these triangles. The tutor responds first with a generic
message, “The premises you chose are not a legal justification of this concept. Review
the TRIANGLE CONGRUENCE SHARED SIDE concept”. If the student were 1o make this error
a second time the tutor would respond with more specific feedback about the error:
“The premise AK & BX is not a part-statement of the concept you are trying to prove”.

~ This example illustrates the two levels of iogical feedback. The generic feedback
message always appears in response 10 the first logical error a student makes when
attempting to justifying a particular statement. The response to the second and
.bsquant logical errors depends on the type of the error. Logical errors are

gonzed into three types, ordered in terms of severity: 1) wrong-type: one of the
emises is of the wrong type, e.g., not a part-statement of the schema being justified,
' 160-few. all the premises are of the right type, but there are not enough of them to
lisfy & way-to-prove, and 3) too-many: they're the right type and there’s enough, but
re are extra unnecessary ones as well. The tutor generates a message to address
. most severe error the student has made. The example above was a wrong-type
back message. Too-few feedback says “The statements you selected are part-
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statements of <a schema statement= but they do not match any of the ways-to-prove”,
while too-many feedback says “You ¢chose more pramises than you need.

2.4.3.3 Feedback for Execution-Justification. This feedback is quite simpie in this
version of ANGLE. When a student makes an error in attempting to add a rule, the
tutor responds by indicating the what type of statements the premises should be. For
gxample, if a student makes a mistake on a triangle rule, the tutor responds “The
remises of <a triangle rule, like SAS> should be 3 segment or angle congruence

statements which are corresponding pans of congruent triangles.”

2.4.3.4 Miscallaneous Feedback Situations. Wt is possible to create a loop in ANGLE's
proof graph by indirectly using a statament to justify itseif. ANGLE detects this and
responds “You are trying to use <some statement> to prove itself. That line of
reasoning is circular.”

Other special case message siuations inciude (1} trying to justify a given and (2)
trying to use the goal as a premise. In the former case, the tutor responds “it doesn't

make sense o justify a given. Givens are already proven by definition.” In the latter
case, “It doesn’t make sense to use the goal as a reason. The goal is what you're try 1o

prove.”

2.4.4 Strategic Hints

Strategic hints are given under two circumstances. Either because students request a
hint using the Info menu at the top of the screen or because they appear to be
floundenng. In a similar fashion to the Geometry Proof Tutor, students are judged to
be foundering if they commit three logical errors within a particular hinting context. {in
GPT, strategic hints start sooner — after two logical errors.) Each hinting context starts
gither at the beginning of the problem or after a successful justification action.

The first time a student gets a hint within a hinting context, either because he’s

requested one or because he’s made three logical srrors, it is the most general hint
- associated the with a good next move as determined by the expert component (as
described above). Until the student successfully justifies some statement and as long
as they continue to make more logical errors or request hints, they will get ever more
specific hints which bottom-out by teliing the student what he should do. We call this
last type of hint a botfom-out hint. Typically, there are only one or two less general
hints between the most general hint and the bottom-out hint, Thus, if the student is not
asking for help it will take three logical errors before they get their first general hint and
two or three more errors before they get the bottom-out hint — a total of five to six errors.
Alternatively, they will get the bottom-out hint if they are not making errors but request

& hint three or four times within a hinting context,

. Planning hints are associated with schemas and are retrigved from the particuiar
schema that the expert suggests as a good next move. The most general schema

ts are applicable to all or most schema classes, while the more specific hints may

2 only associated with a particular schema. Planning hints for a particular schema
taternent are selected from one of three categories depending on the situation: (1) a
hema selection hint is given if the student has not yet posted this schema statement,
) & schema justification hintis given if the schema has been posted and the part-
atg‘:mer]ts necessary to prove it have been posted and proven, or (3) a part-statement
fication hint is given if the schema has been posted but the part-statements

Ssary to prove it either have not been posted or have not been proven.
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(Examples of these hint categories are given below.} Recall that because of the way
the suggested next schema is generated, in case (3) the needed part-statements will
be necessarnly provable from already proven schemas.

Planning hints are given until planning is complete. Then execution hints are
given. In other words, the cognitive model suggests that a complete plan should be
found before potentially wasting time executing something that will not contribute to
the final proof.

2.4.4.1 Hints for Schema Selection. The most general schema selection hint, “Look in
the diagram and see if you can find something that looks like one of the concepts
you've learned”, appears for any schema except the triangle-related schemas. In the
case of triangle schemas, the general statement selection hint is “Sometimes triangle
concepts are hard too see. If you can't find all <N> tiangles in this diagram, you may
not have noticed some that are useful.” wheare N is the number of triangles in the
diagram. This hint is intended to encourage students to more carefully parse the
problem diagram in situations where they are apparently not seeing an appropriate
triangle congruence inference. The more specific hints essentially indicate the type of
schema the student should be looking for, for example, “Find lines in the diagram
which look perpendicular. Try to prove that they are.” The schema selection bottom-
out hint tells them which particular instance to pick, for example, “Pick the CONGRUENT
TRIANGLES SHARED SIDE concept and indicate &AcD and aBcn in the diagram.”

2.4.4.2 Hints for Schema Justification. The most general schema justification hint
attempts to focus students on looking for any proven pan-statements of the schema
they are trying to prove, “Find proven part-statements of <the desired schema> and
use them to justify it.” Essentially, this is a generalization of the indirect subgoaling

- that Greeno identified (see Section 1.5.4.2) in that it applies to any schema not just
triangle congruence schemas. The bottom-out hint is “Justify <the desired schemax>
using statements: <the necessary statements>.” )

2.4.4.3 Hints for Part-Statement Justification. Schema justification hints are given
when the expert’s suggested schema can be proven directly with part-statements that
are already posted and proven in the proof graph. In the case that one of these part-
statemants has not been proven or posted, a par-statement justification hint is given.
The most general hint is “Look for OVERLAPPING concepts. That is, look for a part-
statement which appears both in <desired schema> and in a concept you've already
proven.”. The less-general hint points out which part-statement this is and the bottom-
out hint explicitly states how it should be proven: “Justify <needed part-statement>
using concept <already proven schema>.”

2.4.4.4 Hints for Execution-Justification. The execution hinting scheme is quite simple
in this version of ANGLE. The most general hint, makes sure the student knows he is
8xecuting and no longer planning: “Add rules to indicate the reason for each statement
I concept. All concepts and statements, except the givens, should have thick lines
aing to them”. The bottom-out hint is “Prove «<statement> using the <rule> rule.”

2.5 WHAT'S ON THE HORIZON FOR ANGLE?

2 have!two good milestones of tutoring success to which ANGLE can be compared.
he first is GPT which, in a field testin a Pittsburgh high school, led to about one grade
vel or one standard deviation improvement in students who had the tutor in their
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classroom over students in a normal classroom. The second milestone is a generic
one for all computer tutors. Bloom (1984) showed that human tutors can improve
student performance by about 2 standard deviations over students in a normal
classroom.

Why might ANGLE be better than GPT? We can think of a tutor as a model of
problem solving which students can emulate. To the extent that the tutor's problem
solving method is a good one and students successfully emulate it, then they will be
good problem solvers as well. Because DC is a more powerful method than the one in
the previous tutor, we believe that students who successfuily emulate it will be even
better problem solvers than those who successfully emulated the problem solving
method taught by GPT.

Besides being a more powerful problem solving method than one that focuses on
single steps, our basic research suggests that the DC method may be easier to learn.
Koedinger and Anderson (1989) argue that DC-schema's are not learned, in any
direct way, from the formal rules of the domain — what we call the execution space.
Instead, they appear to be [earned by identifying useful categories of domain objects
{i.e., the configuration) and learning their properties (i.e., the par-statements and
ways-to-prove). These categories carry the load of recognition: indicating when
particular knowledge should be brought to bear and having the effect of drastically
reducing the search space. The properties carry the load of inferencing — indicating
what can be concluded (part-statements) and under what conditions (ways-to-prove).

We believe this type of learning, that is, abstraction from domain objects, is a more
natural extension of students’ prior knowledge. Thus, contrary to the concern that DC
- reprasents an expert method that will be too difficult for students to understand, we
. believe the DC method may be easier to learn. The instruction in GPT is focussed on
- the formal rules of geometry which are totally new and unfamiliar t¢ students. In
- contrast, the focus of instruction in ANGLE would be on diagram configurations and
- their properties. Pre-geometry students already have some prior percepiual intuitions
about geometric figures. Diagram configuration schemas can be taught by building off
_ this familiar ground,




CHAPTER 3.
INITIAL EVALUATION OF ANGLE

3.1 INTRODUCTION

This chapter reports on our first empirical study of ANGLE. The central goal is to test
the hypothesis that the development of more accurate and powerful cognitive models
of problem solving can lead to major improvements in the instruction of problem
solving, particularly within the context of intelligent tutoring systems. In this study, we
compared GPT and ANGLE - two tutors for the same domain whose primary

difference is the cognitive model that underlies them. While the cognitive modei
underilying GPT is a reascnably good one, it has seme flaws. it does not do a good job
capiuring the more strategic abilities of effective problem solvers. The DC model
improves on GPT's model by providing a sound explanation of these abiiities. The
question is: can this improvement lead to more effective instruction?

In addition to this big goal, this study aliows us to (1) check the feasibility of
teaching proof planning separate from execution, (2) gather further data on the roles of
conceptual, perceptual, and formal rule knowledge in a formal reasoning domain, and
{3) gather data with which to tune ANGLE’s interface and tutor messages.

ANGLE is still in an early development stage. In particular, the current
implementation of the feedback scheme and the wording of the feedback messages
are only a reasonable first pass attempt. [t takes iterations of usage and redesign 1o
~ get a good sense for how to make them most effective. As mentioned in Chapter 2,
~ ANGLE represents about 1.5 person-years of efforl. This study was its first extensive

- trial. In contrast, GPT represents about 10 person-years of effort and has been through
at least 2 major iterations of study and redesign.

A 3.2 METHOD
3.2,1 Subjects

The subjects in this study were high school students recruited from the Pittsburgh
Public School district. To reduce the amount of declarative instruction in geometry and
focus on proof problem solving, we required these students to have just completed a
high school geometry course. 30 students participated for pay: $54 total for

completing the experiment. Subjects were told they would receive $2 per hour plus a
completion bonus of $20 and a performance bonus of $10. The performance bonus
was intended o encourage subjects to take the task seriously. All subjects were

actually paid the whole amount.
2.2 Materials

: The following materials were used in this study. The handouts and tests appear in
Ppendix A.
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Handouts: Rule Summary Sheet, Tracking Sheet, Concept Summary Sheet
(ANGLE group only), ANGLE Text (ANGLE group only), GPT Text
(GPT group only).

Tests: Proof Construction A, Hidden Figures A, Truth Judgment A, Proof
Checking A, Proof Construction B, Hidden Figures B, Truth
Judgment B, and Proof Checking B.

Tutors: ~ ANGLE written in Macintosh Allegro Common LISP running on a
Mac lici, GPT written iNTERLISP-D running on a Xerox 1109.

3.2.3 Design

The design of the study is straight-forward, Half the subjects used ANGLE while the
other half used the Geometry Proof Tutor (GPT}. There were two versions of each test,
the A version and the B version, designed 10 be equally difficult. Half the subjects in
each group took the A version tests as pre-tests and the B versions as post-tests, while
the other half did the opposite: B versions as pre-tests and A versions as post-tests.

Here is the design, with number of subjects in each cell:
Order:
Tutor: A->B B->A
ANGLE; 8 7 15
GPT| 7 8 15
15 15 | 30

2.4 Procedure

Subjects participated in six two-hour sessions over the period of two weeks. The first
session was devoted to pre-testing and if time permitted, an introduction to the one of
e two tutors depending on which condition the subject was in. During the next four

ys, the subject wouid work on the tutor until they had spend eight full hours. On the
xth day, subjects would take the post-test.

PRE-TESTING ==> 8 HRS OF TUTORING ==> POST-TESTING

During both the pre-test and post-test, subjects were given the Rule Summary
heet for the Proof Construction and Proof Chaecking tests. For the proof construction
st they were told that their proofs must not contain any geometry rules other than the
ight appearing on the Rule Summary Sheet. They were given 35 minutes for the

ot Construction test, 6 minutes for each of the two parts of the Hidden Figures test,
minutes for each of the Truth Judgment and Proof Checking tests. The eight test
wouts appear in Appendix A.
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3.2.5 Motivation for Tests

The Proof Construction test was the main dependent measure. We wanted to know
how the tutors effected the acquisition of proof construction skill. The other tests were
used to try 1o capture sub-components of proof construction skill.

The Hidden Figures test is a variation of the Embedded Figures Test (Witkin et. al,,
1971). The test involves finding one of set of figures within a complicated line drawing.
This type of perceptual disembedding is similar to the kind of disembedding geometry
problem solvers have to do, for example, to find two congruent triangles in a

complicated geometry diagram.

The Truth Judgment and Proof Checking tests were an attempt to decouple the
planning and execution portions of geometry proof skill. The Truth Judgment test was
designed to capture planning skill, but not require execution. Here’s an example

problem:
Q YES

Ga. If £TQU 2 ZRaU and £qQTVU § LGRU,
must £STU € ZSRu? / \
T U rn CAN'T

TELL

The student was asked 10 circle either YES or CAN'TTELL, One way to approach
~ these problems is 10 attempt to construct a proof plan of the conclusion: £STU & £SRU
- inthe example above. If a plan is found, the answer is YES. Note, it is not necessary to
- fill in the details of this plan in order to correctly answer these problems — thus,

execution skills are not required.

A second motivation for the Truth Judgment test was an attempt to identify biases in
geometric reasoning in the spirit of the biases which have been found in syllogistic
reasoning {Johnson-Laird, 1983). In particular, the test included four types of
problems varying on whether the correct answer was YES or CAN'T TELL and whether
the problem diagram was “good”, meaning the givens and goal of the problem iooked
true, or “bad”, meaning the givens and goal did not look true:

Diagram:
Answer Good Bad
YES] a b
CAN'T d
TELL] ©

- Problem types b and d differed from matched items a and ¢ only in that the diagram
as distorted. Problem types ¢ and d had the same diagram as a and b, but the point
abels were different and the problem givens and goal were different. Problems 1a,

b, 2¢, etc., appeared on Truth Judgment test A, while problems 1b, 1c, 2a, 2d, etc.,

eared on Truth Judgment test B.
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in contrast to the Truth Judgment test, the Proof Checking test focuses on execution
skills but does not require pianning skills. The problems contain two-column proof
solutions with errors in them. The task for the student is to identify the errors. These
solutions are essentially correct — they contain all the elements of a complete proof
plan. However, they contain two types of execution errors: 1) skipped execution steps
or 2) a correct step justified with the wrong rule.

3.2.6 Tutoring Details: Slowing Down ANGLE

in both groups students worked with a computer tutor for 8 hours. Each student read
through their respective text handout. Both texts start by illustrating how to solve
problem PROB150 using the tutor — indicating precisely what mouse-clicking and
keyboard actions are required. The remainder of the texts altermatively review the
needed geometry content and then indicate the next problem the student should work
on with the tutor. To keep track of their progress students were asked to use the
Tracking Sheet to check off the problems as they completed them.

The tutors were used as designed with one exception. We tried {0 compensate for
the fact that loading a problem on GPT takes significantly longer (a minute or two) than
loading a problem on ANGLE (about 10 seconds). Even though this speed-up is
partially due to the greater efficiency of DC over GPT's expent {the other part is the Mac
Il hardware is faster than the Xerox 1109 hardware}, we didn’t want to get an effect
simply because studenis were able to spend more time solving problems with ANGLE.
Thus, we “brain-damaged” ANGLE by putting a pause in the problem loading
procedure such that loading a problem on ANGLE would take about as long as
joading it on GPT.

3.2.7 Curriculum

Given the relatively short training time (8 hours), we focussed on a limited portion of
the curriculum, in particular, the topics of perpendicularity and triangle congruence.
Traditional geometry textbooks are organized around stating, explaining and giving
examples of geometry postulates, definitions, and theorems. All three of these can be
stated conveniently as if-then or if-and-only-if rules and we refer to them collectively as
rules or logical rules to distinguish them from production rules. The curriculum for this
experiment included the 8 rules; DEFINITION-QOF-PERPENDICULARITY, CONGRUENT-
ADJACENT-ANGLES, CORRESPONDING-PARTS, 5SS, SAS, ASA, AAS, and REFLEXIVE. These
rules are abbreviated and defined in the Rule Summary Sheet which was given to all
students and appears in Appendix A.

Four DC schemas cover the same territory as these eight rules. These schemas
are: PERPENDICULAR-ADJACENT-ANGLES, PERPENDICULAR-CROSS, TRIANGLE-
CONGRUENCE, and TRIANGLE-CONGRUENCE-SHARED-SIDE and they are shown in the
Concept Summary Sheet (Appendix A}.

The 30 problems used by both groups during tutoring appear on pages 3-5 of the
Tracking Sheet {Appendix A). Subjects were allowed to refer to them during tutoring.

3.2.8 Test Grading

Proof Construction. We graded the problems on the Proof Construction in two different
ways: {1} an overall planning and execution measure and {2) a planning only
measure. The overall measure gives one point for each student step which is correct
and a part of a solution. Note, that in the case of multiple solutions to a problem, the
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maximum number of points for that problem is still the number of steps in the shortest
solution. To prevent a student from getting more points for pursuing a longer solution,
such solutions were scored by subtracting one from the maximum score for every
missing step. Students lost half a point for correct steps which were justified by the
wrong rule. The maximum score on this measure was 32 for Proof Construction test A
and 31 for Proof Construction test B.

For the planning measure, one point was given for each correct planning step that
the subject made. The maximum score on this measure is 12 for both version A and
B. Correct planning steps correspond with the diagram configuration schemas in a
correct solution. Subjects were credited for a planning step if:

a) one of the written steps is the whole-statement of the corresponding schema
{and in the right position of the proof), or

b) one of the written steps is a part-statement which is unique to the schema, or

c¢) one of the written steps is a part-statement of the schema and is justified by a
rule which is unique to that schema, or

d) the diagram is marked so as to uniquely indicate the schema.

QOther statistics wera coliected including: 1) the number of illegal moves, 2) the
number of legal but off solution path moves, 3) the number of “rule errors” defined as
steps which had the right statement, but were justified by the wrong rule, and 4) the
number of “skipped steps” defined as the number of execution steps left out in the
context of a correct planning step.

Truth Judgment. Subjects received one point for each correct item. There were 17
total points on both tests.

Proof Checking. Subjects received 1 point for each incorrect step correctly identified
as "doesn’t follow” plus 2 more points if they correctly explained what was wrong with
he step. They received 1 point for each corract step identified as “OK". Both test

_versions had 8 incorrect steps and 8 correct steps, so that the maximum score was 32
points (i.e., 8x3 + 8x1).

Hidden Figures. Subjects received 5 points for each correct item and lost 1 point for
ggch incorrect item. With 16 items on each test version, scores could range from -16 to

3.3 RESULTS AND DISCUSSION

3.3.1 Overall Results of the Pre-Tests and Posi-Tests

Figure 3,1 shows the percent correct on all four pre-tests for both tutor groups. The
rends in favor of GPT on all four tests would suggest a stight advantage for the GPT
udents, These differences are not statistically significant, p> 6, p> .18, p>.9,and p
4 respectively for the Proof Construction, Truth Judgment, Proof Checking, and

den Figures pre-tests.
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Figure 3.1. Percent correct on pre-tests,

Figure 3.2 shows the parcent correct on all four post-tests for both tutors. We see
essentially the same trends in favor of GPT as we saw in the pre-tests. But again,
none of these differences are significant, p> .13,p » .28,p> .33, and p> .71
respectively. The difference on the Proof Construction test is somewhat farge and
below we discuss what might be going on here. However, the overall point is that in
the first major test of ANGLE we have achieved a level of tutoring equivalent to GPT.
In addition, we have good reason to believe that the current version of ANGLE has
particular weaknesses that can be remedied. We provide evidence for these
imitations below and discuss possible remedies.

it is impontant to note that students did show significant learning in both groups.
Comparing subjects’ pre-tast scores to their post-test scoras, across both groups, we
find that subjects show significant learning on all but the Truth Judgment test (p-

alues, .0001, .09, .0001, and .02 respactively). If subjects had not learned, one might
uestion the adequacy of the experimental procedure, for example, was there enough
aining time? Was the curriculum adequate? Was the subject population

ppropriate? However, consistent with the established success of GPT, subjects
amed quite a lot.  On the proof test, subjects went from about one third correct on
verage on the pre-test to more than two-thirds correct on the post-test!. These results
rovide evidence that ANGLE is an effective tutor, though we eieary can't say thatis
ore efiective than GPT.

1Notef to avoid ceiling effects, these tests were designed to be difticult. The Proof Construction
s, for example, contained items thiat are cons da:abfy mora difficult than the ones typically
ntered in a high school class.
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Figure 3.2. Percent correct on the post-tests. None of the differences
are significant, p > .13, p > .28, p > .33, and p > .71, respectively.

Adjusting for Pre-Test Differences. We can try to adjust for the pre-test differences in a
couple of ways. First, we can analyze subjects’ pre- to post-test improvement in terms
of the difference between the two scores. Comparing the improvements of the two
groups, we get p-values of .13, .71, .23, and .61 respectively — again suggesting no
significant difference between the tutors. Second, given the high correlation between
pre-test and post-test scores (.66, .33, .64, and .64, respectively), we can do an
analysis of covariance using the pre-test score as a covariate. Here we get p-values of
.55, .15, .42, and .62 respectively for the four tests.

30r
25+ Pre-test Spiit:
Proot ‘ o ANGLE Tutor: LOW HI
Post- 20 ¢ ANGLE[16.5 124.2 118.6
Test ) o= GPT =9 |6 12
15¥ GPT [166 [284 [23.7
‘o 6 19 15
' 16.5 [26.7 |[21.6
LOW HIGH 15 15 30
Proot Pre-test
Median Spiit

Figure 3.3. Hint of possible aptitude-treatment interaction on the
Proof Construction test. ‘Tt is not significant, p > .3. There is,

however, a clear effect of aptitude, p < .001, The table on the right
shows the post-test means and number of subjects in each cell.
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There was some hint of an apfitude-by-treatment interaction as is shown in Figure
3.3. Subjects were split into HIGHSs, the 15 highest scoring subjects on the proof pre-
test, and LOWS, the 15 lowest scoring subjects. A two-way ANOVA yields a significant
effect of aptitude {p < .001), but no significant effect of tutor (p = .31} and no significant
interaction {p=.33). .

There is virtually no difference between the tutors in the LOWSs. Notice that to the
extent there is a difference between the tutors it appears only in the HIGHs. In other
words, perhaps the HIGHs are learning something from GPT for which the LOWSs are
not prepared and ANGLE does not provide. Below, we argue that ANGLE is teaching
proof planning as well as GPT, however, it is perhaps at a disadvantage in teaching
proof execution. To the extent that learning proof planning precedes the acquisition of
execution skill, it may be that the HIGHs have begun to master planning and are
beginning to focus on execution, while the LOWSs are still engaged in mastering
planning. Thus, the LOWSs are perhaps unable to take advantage of GPT's slightly
better instruction of execution skill.

3.3.2 Differences in Planning vs. Execution

As described in the Method saction, we graded the Proof Construction test in more
than one way, the goal being to try to access student’s proof planning skills separately
from their overall proof writing skills. The graph on the left in Figure 3.4 shows that
both tutor groups started out with the same proof skills, with a slight trend in favor of
GPT.

Pre-test Post-test

25.01 25 .0+ 23.6

Overall Score Plan Score

ﬁ Qverall Score Plan Score

Figure 3.4. Proof execution and planning on the Proof Construction
pre- and post-tests. None of the differences are significant. (The rend
in the overall score is the raw score corresponding with the percentages
shown in the “Proof™ column of Figure 3.2, p > .13.)

- The post-test scores are shown on the right in Figure 3.4. We see the trend in favor
f GPT in the overall score, 23.6 vs. 19.6, disappears in the planning score, 10.0 vs,

In other words, while it may be possible that the current version of ANGLE is not
good as GPT at teaching execution skills, it appears to be doing equally well

ching planning.

o™
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From the perspective of the problem solving theery developed above, this result is
quite interesting as it adds further evidence in favor of the psychological reality of the
abstract planning space. In order to pin this result down further, we took some other
measures from students’ proof solutions as descnbed in the method section.

Pre-test Proof Measures

4
3 5
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No. Occurr, 2 -
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Figure 3.5. Proof measures on the Proof Construction pre-rest.
None of the differences are significant.

Figure 3.5 shows these measures taken from the proof pre-tests. None of these
differences are significant (though the positive trend on OffPath moves and the
negative trend on lilegal moves are both consistent with the conjecture that the GPT
students were better to start),

* Figure 3.6 shows the proof measures taken from the proof post-tast. Here we find a
significant difference in the number of steps ANGLE subjects are skipping relative to
GPT subjects. This difference explains why the GPT students might be doing better on
execution, but not on planning. In other words, step-skipping (along with rule errors)
measure the number of execution errors subjects are making on the tests. Basically,
ANGLE students' plans are just as good, but their execution is lacking relative to GPT
students. While they get as many of the key steps in a proof, when it comes to
éra?g#iating them into the formal language of geometry they leave out some of the
etails,




Post-test Proof Measures
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Figure 3.6. Proof measures on the Proof Construction post-test. The
SSkp (steps skipped) difference is significant (p <.001). Note: While
the step-skipping per test goes up from the pre-test to the posi-test, this
does not indicate Ss are getting worse, rather, it reflects the increased
opporiunities to step-skip that Ss are getting by making more planning
inferences on the post-test.

3.3.3 Truth Judgment Results

As described in Section 3.2.5, it was hoped that the Truth Judgment test would
measure students’ planning abilities independently of their execution skills and that
improvements in planning due to tutering would show up in pre-to-post test
differences. However, there was little if any transter from the proof instruction (from
either tutor) to this test. While students scores improved from 67% correct on the Truth
Judgment pre-test to 72% correct on the post-test, this trend was only marginally
significant (p=.09)1,

- Given the relative lack of improvement on this test, the invited conciusion is that the
tutoring did not improve students’ planning. However, this conclusion contradicts the
results of the Proof Construction test which indicated students’ planning abilities did

: improve in addition, there Is evidence from the Truth Judgment results that supports a
aim that students did not fully appreciate (nor implement) the relevance of proof
‘planning to solving these problems:

1) While planning improved due to proof instruction, students did not show
significant improvement in the Truth Judgment test indicating they were not
using what they had learned.

2) Students were given 15 minutes to perform this test and most finished in 10
Indicating they were not spending the time necessary to come up with proof
plans for the more difficult items on this test,

1Nme since this test had yes-no ilems on it, these scores should be thought aboul relatwe to the fact
t -Someone knowing nothing is likely o score about 50% by chance.
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3) There is evidence that other, non-proof related, factors played a significant
role in students’ answer selection. This evidence is discussed below.,

3.3.3.1 The Misleading Model Effect. Instead of proof planning, it appears subjects
were using a less-sophisticated approach. This approach invoives using the provided
diagram as a model of the given statements and simply reading-off whether or not the
goal statement appears true. The possibility of such a strategy was anticipated and
the items were designed to test for it (see Section 3.2.5). In other words, the items
were designed such that reading-off the diagram yisids the right answer for half of the
items, ones in which the answer and diagram are consistent, but yields the wrong
answer for the other half.of the items, ones in which the answer and diagram are
inconsistent. Items are consistent when either the goal looks true in the diagram and
the answer is YES or the goal looks false and the answer is CAN'T TELL; items are
inconsistent when either the goal looks true and the answer is CAN'T TELL or the goal
locks false and the answer is YES. Tabie 3.1 shows two of the items. (I'll discuss the
easy-hard dimension below.}) The correct answer for the first of these, problem 1b, is
CAN'T TELL and since the goa! looks true in the diagram {suggesting the YES answer), it
is an inconsistent item. The correct answer for the second item, problem 83, is YES
and since the goal looks true (suggesting the YES answer), this is a consistent item.

Table 3.1. Examples of Truth Judgment items.

{Easy, CaN’T TELL, inconsistent item: I

1b. If A€ # CB, must AB L €D? D YES

CAN'T
TELL

IHaxdE YES; consistent item:

9a. If £TQU & £RGU and £aTU § ZGRU, YES

]
Q
must Z2STU £ ZSRU? A\
T ] R CAN'T

TELL

- Infact, subjects were often fooled by the inconsistent items indicating a significant

tendency to use the given diagram as a model. Figure 3.7 shows this result. The

:_horizcntai axis indicates whether the correct answar is YES or CAN'T TELL, while the

Graphed lines indicate whether the item was consistent or inconsistent. The vertical

aXis Is the average percent correct for all students on both pre- and post-tests. Recall

ﬂ;!a; r;f students simply guess randomly they are likely to get about 50% correct by
ce.
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Figure 3.7. Percent correct on the Truth Judgment items broken
down according to the correct answer and diagram consistency.
Students perform significantly better on the consistent diagrams (p <
.001).

The ditierence between the consistent and inconsistent items is significant (p <
.001). There is no overall difference between the YES and the CAN'TTELLitems (p =
.12} nor is there a difference between good diagram items, where the givens and goal
look true in the diagram (independent of the answer), and bad diagram items, where
the givens and goal look false (p = .78).

3.3.3.2 The Plan Difficulty Effect. In addition to the bias to read-off the conclusion from
the diagram, there appears to be ancther strong bias in students' reasoning strategy.
_Figure 3.8 shows the results splitting the items into easy items, those corresponding
-with one planning step, and hard items, those corresponding with multiple planning
steps. Again, consider the example items in Table 3.1. Problem 1b is easy because it
corresponds with one planning step, that is, the correspeonding YES item can be proven
ith one DC schema (the PERPENDICULAR-ADJAGENT-ANGLES schema in this case).
roblem 9a is hard because proving £STu & Zsru from the givens involves multiple
schemas (either 3 TRI-CONG-SHARED-SIDE schemas or 2 TRI-CONG-SHARED-SIBE and 1
ERPENDICULAR-CROSS schema).

On the easy items, students are biased to answer YES (57% of the time} indicated

y the fact that they get more YES items correct than CAN'T TELL items. In contrast, on
he hard items students are biased 1o answer CAN'T TELL (62% of the time) indicated by
he fact that they get more CAN'T TELL items correct than YES items. The interaction
etween item difficuity and answer type is significant {p < .001). Looking at this
nteraction more directly, within the easy items the difference between the YES and

N'T TELL items is significant (p < .002), and within the hard items this difference is

0 significant (p < .001).
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Easy items Hard Items
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Figure 3.8. Percent comrect on easy items and hard items. In addition
to the bias to be deceived by the diagram, students were biased to
answer YES on easy items and CAN'T TELL on hard items. The
interaction between item difficulty and answer type is significant (p <
.001).

There appear 1o be two possible interpretations for this plan difficulty effect: (1) a
locality hypothesis or (2} a complexity hypothesis. The locality hypothesis is that
subjects are applying a type of lecality heuristic: “constraints on a part (or parts) of an
object are more likely to constrain nearby paris of the same object than more distant
parts of other objects”. (Note, other uses of spatial locality as a heuristic for reasoning
were discussed in Sections 1.2.2 and 1.5.3.1.) In problem 1b, for example, the given
and goal statement apply 10 nearby parts of the same object, that is, the T-shaped
configuration of perpendicular lines. 8o, following the heuristic, one would tend to
(incorrectly) answer YES as 8 of the 30 subjects did. The other easy items can be
characterized as containing one “object” (corresponding to one of DC’s diagram
configurations) and the givens and goals always refer to parts of this object. Thus,
{ollowing the locality heuristic one would tend to say YES on these items, all other
things equal. In contrast, consider problem 9a where the givens constrain parts of the
iangles above the line TR while the goal refers to parts of the triangles below this line.
heuristic would lead one to conclude that the givens and goal seem unrelated and
, {incorrectly) answer CAN'T TELL as 17 of the subjects did. The other hard items
ontain many “objects” and the givens always refer 10 a different object than the goal.
hus, all other things equal, the heuristic suggests to answer CAN'T TELL.

- A second hypothesis, the complexity hypothesis, is simply that for complex

agrams, subjects will tend to answer CAN'T TELL while for simple diagrams, they will
nd to answer YES, Since the diagrams for the hard problems were more complex

an the diagrams for the easy problems, this hypothesis is consistent with the data.

& confound can be alleviated by designing easy problems with diagrams that are
ally as complex as the hard problems — that is, some itrelevant lines can be added
he diagrams of the easy problems to make them more complex.

.3.3 Implications for the Menial Models Theory of Reasoning. These Geometry
th Judgment problems are much like logical syllogisms. While they are not limited
WO premises as logical syliogisms are and they require specific geometry
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knowledge as well as general logical knowledge, they do have the same structure as
logical syliogisms: In both cases subjects are given certain premises and asked if a
certain conclusion foliows from those premises. Perhaps the leading theory on how
hurmans solve syllogisms is Johnson-Laird's {1983} mental models theory. In this
context, model is a specific instance of the general statements made in the premises of
the syllogism. The mental model theory proposes that instead of using logical rules to
solve syllogisms, people imagine a model {sometimes more than one) which is
consistent with the premises. Then they check the problem conclusion to see if it is
consistent with the model(s). Ifit is, they answer YES, otherwise they answer NOT VALID.

What is unique about these Geometry Truth Judgment problems is that while in
typical syliogism experiments subjects imagine their own model(s}), here subjects are
given a candidate model’. The diagram that goes along with a problem is a model! in
that it contains specific features which are not stated in the premises. Some of these
features may actually follow from the premises, for example, £STU & £SRU in problem
9a of Table 3.1, while others may be fortuitous, for example, ZSTU £ ZaTu in the same
diagram.

By giving subjects a model, the Truth Judgment test provides a different kind of
gvidence for the mental models theoty. In the typical expenment, the match between
the theory and the subjects’ actual reasoning process is performed indirectly by
comparing the error patterns predicted by the theory with the subjects’ error patterns.
In contrast, the Truth Judgment test attempts to directly manipulate the reasoning
process by providing a candidate model. If students are reasoning purely by abstract
rules, they should not be influenced by the model we provide. The clear evidence that
‘subjects are influenced by inconsistent diagrams indicates they tend to use the
provided model and that, therefore, in those cases they are reasoning by model rather
than by rule.

if performed systematically and carefully, model-based reasoning can be quite
effective. However, it can lead to error, for example, in logical syllogisms when not
anough models are considered. This type of model construction error also accounts
for the subjects tendency toward errors on the CAN'T TELL-inconsistent items in which
_the diagram was over-specialized. Rather than attempting to construct other models
counter-examples) that might contradict the over-specializations, subjects tended to
be influenced by the given model.

_ The errors on the YES-inconsistent items are different. In this case, the provided
giiagram was not only inconsistent with the goal, but also inconsistent with the givens -
in other words, the provided diagrams were not good models. An effective form of
model-based reasoning would notice this discrepancy and construct a new model
consistent with the givens. (Note that if the goal is true, that is, if it foliows from the
givens, then it will necessarily appear true in a good model.)

As was hinted at in Section 1.6.1, an important supplement to model-based
feasoning is a component for chaining inferences from object to object. Without this,
problems like the hard items could not be effectively solved.

T,

While subjects were certainly free to construct other models, the evidence suggests that, for the
5t part, they did not.
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3.3.3.4 Naive Geomelry. Looking at these resulis a different way, they suggest the
beginnings of a theory of naive geometry similar to the work on naive physics.
Perhaps the difficulty students have with learning proof construction stems in part from
conflicts with (or inadequacies of) their prior geometry conceptions or, more to the
point, their prior reasoning strategies.

This section has identified a number of candidate geometry misconceptions (for
lack of a better word). All of these are best thought of as representing tendencies
rather than strict modes of thought. The first, as indicated by the lack of transfer from
the proof instruction, is the inability to recognize, without prompting, the relevance of
proof construction to making truth judgments. The misleading model effect suggests
two problems with students’ use of mental models corresponding with the two types of
inconsistent items. In the case of the CAN'T TELL-inconsistent items (e.g., problem 1ain
Table 3.1}, they often fail to generate an alternative model, a counter-example, that
would indicate that although tha goal looks true in the provided model, it does so only
because the diagram is over-specialized. In the case of the YES-inconsistent items,
they often fail to notice that the given modal is not actually a model of the problem at all
since the givens are not true in it.

3.3.4 Analysis of On-line Tutoring Data

Both computer tutors maintained protocol records of student actions and tutor
responses. We can look as these records 1o get a finer grain view of the learning that
occurred and, in particular, we can investigate issues of (1) ease of interface use and
(2) effectiveness of tutcring strategiss and messages.
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Figure 3.9. Average number of problems solved by students during
mt?}lgi;g. The ANGLE subjects solved significantly fewer problems (p
< .05).

- From watching students during the study it appeared that ANGLE was not always
YiNg a good job of keeping students on-track during tutoring. Occasionaliy, students
Gre observed clearly floundering. Cne potential manifestation of this is that the
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ANGLE students solved significantly fewer problems during training than the GPT
students did (see Figure 3.8), p < .05.

it appears ANGLE subjects were doing motre floundering than GPT as a result of
the flexibility of the ANGLE interface and tutoring strategy. Flexibility is typically
considered a virtue. [t is considered particularly important by those advocating
discovery learning and also by many of the early intelligent tutoring system designers
(e.g., see Brown and Burton, 1882). However, in this study it appeared that a number
of problems students encountered stemmed from ANGLE's flexibility.

3.3.4.1 Problems with the Bottom-out Hints. In both ANGLE and GPT, strategic hints
are focussed on a good next step the student might take. Hints start out general and
get successively more specific if a student continues to have trouble. in the end, the
hints bottom-out by telfing students exactly what they should do next. This is the last
line of defense against continued fioundering and is intended 1o be fool proof in
helping the student get closer to the problem solution. In GPT, the hints bottom-out by
not only telling the student what to do next, but actually doing i for them. To prevent
the students from relying too heavily on the tutor, ANGLE did not perform the next-step
for the student. It simply told them what to do.

Unfortunately, students were not always able to translate these “bottom-out” hints
into the appropriate actions and because of the flexibility designed into ANGLE,
students were not forced to perform them. Thus, they could potentially go off and
continue to perform unproductive actions and waste valuable learning time.,

In turns out that this situation arose quite often. Bottom-out hints were given on 128
or 23% of the 561 problems solved.! On average, ANGLE students received about
2.5 bottom-out hints on these 128 problems. Often students wouid not immediately
perform the suggested next step. This is measured by two statistics. Since ANGLE
repeats the bottom-out hint if the student continues to have trouble, one relevant
statistic is the number of times a particular bottom-out hint was repeated on average.
Bottom-out hints were repeated about once {0.97) on average. Any repeats indicate a
discrepancy between the tutoring intentions and what the student is thinking.

The second statistic is more dramatic and leads to a more telling result. Itis the
amount of time that is spent from the time the bottom-out hint is given to the time the
student performs the suggested next step. Since thers is more than one solution to
these problems, it is possible that the student never performs the suggested next step
in the course of completing the problems. This happened rarely though, only about
8% of the bottom-out hints given were never followed up with the suggested next step.
In the cases where students do end up eventually performing the suggested next step,
~about 75 seconds elapse on average. Multiplying this by the number of bottom-out
hints given, we find that the students in this study spent about 26.6 minutes on average
?et;mean being told what to do next and actually doing it. This is about 6% of the total
struction time.

H is certainly possible that some uselul work is going on during this time. The
udent may be pursuing alternative paths, working out details, posting future subgoal
slands”, or working backward. Nevertheless, this statistic clearly indicates a
iscrepancy between the way | expected the student-tutor interaction to go and the

TSome of the early protoco! data was lost. Students actually solved 585 problams.
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way it actually did. In the Chapter 4, | suggest a remedy to this problem invoiving a
simple “interface tutor” that will kick-in after bottom-out hints are given and guide the

student in performing the suggested action,

3.3.4.2 Trash Can Misuse. Another fairly common behavior that was indicative of
floundering was the way in which students cecasionally misused the trash can that is
available (in the lower left corner of the screen) to dispose of unwanted statements.
There were quite a few cases where a student would post a useful schema, end up
throwing it out, and then have to reconstruct it again later. One of the intended benefits
of ANGLE's interface was its flexibility to allow students to post “island” subgoals
without having to immediately link them into the prooi. | observed a couple of pilot
subjects using the screen in this way on an earlier version of the system without the
trash can (briefly described in Koedinger & Anderson, 1990b). Somsatimes students in
this study posted such island subgoals, but there are many cases where this might
have happened but didn't because the subject thraw away the statement.

Perhaps making the trash can less clearly visible and not so simple to use, would
discourage this kind of misuse. In addition, it would probably be a good idea for the
tutor to stop students from throwing away certain statements — especially when the

statement is one of the possible next steps.

3.3.4.3 Execution Feedback Inadequate. Ancther curable problem, that contributed to
floundering involved the ovedy simple execution feedback that said, for example, “the
premises of SAS should be 3 segment or angle congruence statements”. Students
were quite confused when this came up in cases where they actually had 3 segment
or angle congruence statements as premises. The statements they had chosen were
wrong, for example, because they corresponded with the illegal side-side-angle

combination.

3.4 CONCLUSIONS OF THIS PRELIMINARY EVALUATION

~Unfortunately, we are not yet at the point where we can decisively affirm or disconfirm
he hypothesis put forth at the beginning of this chapter, namely, that the development
f more accurate and powerful cognitive models of problem solving can lead tc major
mprovements in the instruction of problem soiving. We need to address two key
roblems in order to perform a better test of this hypothesis: (1) expand the size of the
curriculum, and (2) improve the implementation of ANGLE's interface and tutoring
omponents.

- Because of the relatively short time for instruction (8 hours), the curriculum in this
study was kept small (only 8 geometry rules and/or 4 schemas). As it turned out, the
majority of students had plenty of time to finish the 30 problems provided — only 4 did
not and the others did problems over again. Thus, the curriculum could easily be
expanded without increasing the instruction time. This is important because a key
difference between the problem solving method ANGLE teaches and the one GPT
eaches is that ANGLE's method is more effective in the large search space of
ieometry rules (the execution space). By limiting the curriculum, the size of the
gxecution space is reduced and if it is small enough, the search benefits of ANGLE’s
thod effectively disappear. With a larger curriculum, then, we are more likely to see

liffsrence between ANGLE and GPT.




. 78

The second problem we need to address is the limitations in the implemantation of
ANGLE's interface and tutoring components as revealed by this study. Potential
remedies for the more significant of these limitations are discussed in the first section
of Chapter 4.

Perhaps it is well-known to those few who have designed and successfully tested
an intelligent tutoring system, that getting the student-tutor interaction right requires
careful and lengthy user study that goes beyond informally watching a few students
work with the systam for a couple of hours. While | knew prior to the study that
ANGLE's tutoring schemes were not perfect, | did not anticipate certain probiems like
the trouble students had understanding and implementing the bottom-out hints.
Perhaps the conclusion one should draw is that such problems are necessarily a part
of the development process and that the tuning of the interface and tutoring
' components is equally as important as following through on the implications of a
cognitive model.

Still, it remains to be seen what instructional effect an improved cognitive model
can have. When the interface and tutoring components of ANGLE have been cleaned
up and further tuned, a more realistic test can be performed.
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CHAPTER 4.
GENERAL DISCUSSION AND FUTURE PLANS

This chapter has a double role of (1) indicating directions for future work as inspired by
the preliminary evaluation of ANGLE reponted in Chapter 3, and (2) discussing the
general implications of this research for model-based instructional design. One
obvious direction for future work is improving the current limitations in the
implementation of ANGLE's interface and tutoring components. This direction is
discussed in Section 4.1. A less obvious direction involves improving the knowledge
measurement t00ls that are crucial both for measuring learning cutcomes of different
instructional methods and for understanding the nature of that learning. This direction
is discussed in Section 4.2. Finally, Section 4.3 concludes by recapping this research
program and discussing how it might be appfied in other domains.

4.1 PLANS FOR CONTINUED DEVELOPMENT OF ANGLE

Perhaps, the most impottant agenda item for improving ANGLE is to get rid of a
number of minor bugs and discrepancies between the expected and observed
student-tutor interaction. Improvements are needed in the interface and the wording of
the tutor messages. Rather than mention all of these, I'll focus on the ones that could

be of more general interest.

4.1.1 Improving the Interface

4.1.1.1 Dealing With the Bottom-out Hint Problermn. One of the major discrepancies
between the expacted and observed student-tutor interaction was the way in which

- students responded (or failed to respond) to the bottom-out hints when they were

. provided by ANGLE. One possible remedy would be to do as is done in GPT, and

~ perform the next step for students in this situation. An intermediate possibility is to stil!
- ‘have the student perform the step, but require them to do it before going on. In
addition to keeping the student at ieast physically involved, this approach has the
added side-effect of essentially tutoring them on the interface.

In other words, the bottom-out message essentially presents the student with an
merface goal, for example, “Select the CONGRUENT TRIANGLES concept and
indicate AABC & axrz in the diagram”. The proposed change would require the
student to perform the necessary interface actions to implement this step. if the student
performs an inappropriate interface action, the tutor would give them feedback
specifically addressed at performing the correct interface action.

This change amounts to an on-line interface tutor. Since the interface goals
presented in the bottom-out hints can be performed by a simple list of interface actions,
plementing this interface tutor should not be too difficult.

1.1.2 Dealing with the Whole-statement Encoding Problem. One of the difficulties
8ncountered in thinking about how the interface should reify the cognitive model,
volved the distinction made in the model between the whole-statement of a schema
nd the schema itself. For the most part, whole-statements can be considered

uivalent to schemas and thus, in the ANGLE interface a schema/concept is
Presented on the screen with both its diagram configuration and its whole-statement.
Owever, there are some places where the whole-statement might be treated
dependently of the schema, for example, when a whole-statement appears as par of
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the problem givens or goal. In this case, there is a translation process necessary to
convert from the whole-statement to a corresponding schema. This process is part of
the statement encoding process in the DC model (see section 1.3.2.2). The question
was whether and how this whole-statement encoding process would be represented
in ANGLE.

A compromise was mads. On one hand, whole-statements that appeared in the
givens or goal couid be treated, for the purposes of making justification links, just as if
they were schemas. This is a short cut in which the whole-statement encoding
process is left implicit. Alternatively, the student could create the corresponding
schema and attach it to the whole-statement, and thus explicitly perform the whole-
statement encoding process. The interface responded by putting the schema (whole-
statement pius configuration instance} in the given or goal position that the whoie-
statement had occupied. An example of the rasult is shown in Figure 2.13.

While the student was free to do it either way, in the case that the student needed
help at this point, the tutor suggested that they explicitly perform the whole-statement
encoding step. Two problems arose. While the interface actions to perform this step
were the same as those necessary {0 select and justify any schema, the effect was
different {i.e., the schema replaces the whole-statement to which it was linked).
Understanding this interface operation was another thing for students to learn that may
have distracted them from learning geometry.

A second problem was the unanticipated awkwardness that sometimes resulted
from the way the schema hint templates got applied to this situation. While the majority
of these hints read just fing, one of tham, the justification bottom-out hint {see section
2.4.3.2), turned out to be particularly awkward. Since schemas/concepts were referred
{o in the hint messages using the same label as the label for the whole-statement, the
justification bottom-out hint message, which has the generic form “Justify <the desired
schema> using statements: <the necessary statements>."”, ended up as “Justify
<whole-statement> using statements: <whole-statements.”, For exampie, if the whole-
statement AABD £ ACBD appeared as a given and the corresponding TRIANGLE-
CONGRUENCE-SHARED-SIDE schema had been constructed, then if the student
‘happened to need a bottom-out hint, it would read “Justify 4ABD 8 ACBD using
staternents: AABD £ ACRD".

This proved a bit confusing to students. Many of the cases where a student never
riormed the step suggested by a bottom-out hint were cases where the student got
is hint, didn't know how to implement it, and was eventually able to perform a
- different step {i.e., one that involved skipping the whole-statement encoding step) with
o hielp from the tutor.

The proposed remedy for this problem is quite simpie: Eliminate the need to
xplicitty perform whole-statement encoding. In addition, whenever problem given or
oal is a whole-statement, the tutor should display this statement as a schema
omplete with the diagram configuration. Prior to the study | had thought that
ncouraging the whole-statement encoding process would be helpful for the student
ho did not know what to do next. In such a situation, it seemed that the student's
roblem might be that he or she wasn't recognizing in the diagram the particular
bjects referred 1o by the whole-statement. The process of selecting the
responding schema would help the student make this recognition and focus on this
Chema. From watching students, this recognition of given or goal statements in the
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diagram does not appear to be a great difficulty, especially in comparisen to the
difficulties that arose from allowing and sometimes encouraging the explicit whole-
statement encoding step.

4.1.2 Improving Tutoring Messages and Strategies

4.1.2.1 Adding Buggy Ways-to-prove. One of the problems with ANGLE's tutoring
messages was that the execution feedback was quite simple and sometimes
misleading. In particular, this feedback did not respond well to common bugs, like
trying to prove triangles congruent using two sides and a non-included angle. These
situations are captured in GPT by matching them against particular “buggy” production
rules. A similar thing can be done in ANGLE by elaborating the schema
representation to include buggy ways-to-prove in addition to the existing {non-buggy)
ways-to-prove. Tutoring messages can then be attached to these, just like they are
attached to buggy rules in GPT.

4.1.2.2 What's the Proper Role of Execution Training? One impartant question that
was considered before the study and still remains unanswered is: what is the proper
role of execution training? One could take the view that proof instruction in high
school geometry should emphasize prootf planning and not be too concerned about
proof execution, that is, whether students get the formal details exactly right. In fact, a
recent proposal for high school standard suggests a deemphasis on formal proof and
more emphasis on informal proof (Romberg, 1987). However, at least for comparison
sake, it seemed important that the two groups (ANGLE and GPT students) be tested on
- the same standard twa-column format. Thus, it also seemed important to give training
within ANGLE on execution as well as proof planning.

Foliowing the cognitive model, ANGLE's feedback scheme always suggests
planning moves first and only suggests execution moves once a complete plan has
been found. However, consistent with the effort t0 make the system flexible, ANGLE
allows students to integrate planning and execution. In fact, students rarely completed
planning before beginning execution. One measure of this is the percent of inferences
that occurred after execution began, but before planning was finished. Thus, for
example, if all the planning is done first this percentage should be 0. On average,
47% of students’ inferences were in this mixed stage. Students’ tendency to mix
anning and execution was not quite significantly correlated with post-test
performance (p = .06). However, the pattern is that the students who began execution
early also scored better on the post-test. This is probably a reflection of students’ prior
familiarity with the execution space and the good students’ better facility with it

- Another issue relating to the role of the execution training in ANGLE, is the
‘Complexities to the interface that it added. Again such complexities presented
dents with a fearning task that distracted them from geometry.

_Acouple of possibilities may be pursued with respect to this issue. Oneis to
liminate the sxecution training from ANGLE and simply focus on tutoring proof plans.
Would be interesting to see how such instruction would transfer to the task of coming
P with a completely detailed two-column proof. Ancther possibility is to have the tutor
Horce the planning first approach of the cognitive model. Only after completing a

N would students be allowed to do the proof execution.
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4.2 IMPROVING KNOWLEDGE MEASURES

4.2.1 Improving the Truth Judgement Test

It was hoped that the Truth Judgment test would measure students’ planning abilities
in a way that wouldn't be masked by lack of execution abilities. Having such a test is
still desirable, however, as it turned out students did not appear to spontaneously see
the relevance of proof planning to answering Truth Judgment items. Part of the reason
may be due to the fact that as YES-NO type questions these items had the appearance
of being easy, and thus, perhaps it did not occur to students that anything as difficult as
doing proof planning would be relevant. In addition, students were given only 15
minutes to do the 17 items on this test (in fact, most finished in about 10 minutes). Four
of these iterns could be solved with proofs about as difficult as the four proof problems
on the Proof Construction test which students were given 35 minutes fo solve. In other
words, students really didn't have time to do proofs to help solve these problems.

A number of things can be donsg to encourage proof planning. First, an illustration
should be given to students, prior to taking the test, of how planning a proof can help
answer these questions. Second, fewer problems should be given with more time
allowed for each. It should be emphasized to students that they have lots of time to
think hard about each one of the items. Third, students can be asked {0 give a reason
for their answer. In the case that they answer YES, they should provide a proof sketch.
In the case that they answer CAN'T TELL, they should provide a counter example.
Examples of both types of reasons should be given prior to the test.

4.2.2 The Need for a Measure of Schema Knowledge

Both GPT and ANGLE are primarily focussed on teaching the process of constructing
proofs and not on teaching the declarative knowledge of the basic operators, rules in
he case of GPT and schemas/concepts in the case of ANGLE. To the extent that

- students don't have a reasonable grasp of this basic knowledge, they are likely to
have trouble. This situation is potentially more problematic in ANGLE because the
units of declarative knowledge in ANGLE, the concepts: (1) are not explicitly taught in
the standard curriculum and (2) are much bigger than the formal rules which are the
declarative knowledge units in GPT. It seems possible that the effectiveness of
ANGLE might interact with the level of students’ prior knowledge of the concepts.
Thus, it seems important to have a measure of this knowledge.

- Such a test might be made up of items, much like the easy items on the Truth
Judgment test, in which the student is given a diagram configuration and some facts
about it, and asked if a particular conclusion follows. One type of item would test
knowledge of the part-statements by providing the whole-statement as the given and a
ssible part-statement as the goal. Another type of item would test knowledge of the
ays-{o-prove by providing sets of pant-statements as the givens and the whole-
atement as the goal. ' :

4.3 RESEARCH SUMMARY

his final section provides a recap of the research agenda carried out in this thesis.
Owever, rather than simply summarizing, I've attempted to generalize the key steps
id present them as a prescription for tutor design. Certainly there are other

Suretically motivated routes to successful tutor design, not to mention getting there
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by good intuitions or serendipity. This prescription is provided merely as one possible
route that may (1) be directly applied in some domains or (2) be used as a departure
point for developing related approaches in other domains.

The approach can characterized in five steps:

1. ldentify the execution space.

2. Look for implicit planning in verbal repotts.
3. Model this implicit planning.

4. Use the modsl to drive tutor design.

5. Tune the tutor implementation.

~ Below | discuss the significance of each step, suggest how it might be done in
general, and review how it was done in this project.

4.3.1 ldentify the Execution Space

This step sets the stage for step 2 where one looks for underlying problem solving
processes that are effectively hidden in current instruction. First, we need to know
what aspects of the problem solving process are revealed, at least implicitly, by current
instruction. This is the task of identifying the execution space. The execution space for
a domain is the problem space most directly induced from the way problem solution
steps are typically or conventionally written down'. In other words, the operators of
this space correspond one-tc-one with the written problem steps.

As discussed in Section 1.1, the execution space operators for geometry are the
various definitions, postulates, and theorems that appear as the “reasons” in the steps
- “of the conventional two-column proof format. The execution space operators for
: - algebra equation solving are the varicus rules (e.g., You can add the same number to
_both sides) for manipuiating equations. In physics problem solving (e.q., the kind

Another potential guide to the operators of the execution space is to look at the
nits of knowledge that are provided to students in their textbooks or lectures. Quite
ften, these units of knowledge correspond with the written problem steps. For
xample, the traditional geometry curriculum is organized around presenting and
ustrating the very same rules that appear as reasons in twe-column proof solutions.
A simifar situation is apparent in algebra and physics.

. A straight-forward way to model problem solving in these domains is as a heuristic
search in the execution space — the only trick is to find appropriate operator selection
heuristics. From the perspective of a student, to the extent that the execution space

ovides a good characterization of skilled problem solving, his or her learning job is
a0e easier. By definition, execution operators can be induced fairly directly from the
ps of worked out examples and may be supported by verbal descriptions in '

ooks and lectures. For example, consider algebra equation solving. An example
rked out solution is shown in Table 4.1.

Newel and Simon (1972, p. 144) refered to a *basic problem space” and gave examples of one in a
er of domains. It is evident from their exampies that what they meant by a basic problem space is
arto what | mean by an execution space, however, they did not explicitly define it.
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Table 4.1 An worked solution in the domain of Algebra equation solving.

3x - 13 = Z2{x = 3)

3% - 13 = 2x - 6 Digtribute

Ix -~ 13 -2x= -6 x's to left side

Ix - 2x = - &4 13 Num®s to right side
x = 7

in this domain, the execution operators can be fairly directly induced from the steps
~ in worked out exampies like that in Table 4.1. This claim is supportad by the fact that
an early machine learning program did exactly that (Neves, 1978). In addition, the
general difference-reduction heunstic turns out to be an effective means of operator
selection. Because this domain independant weak-method works in this domain,
~ learning operator selection is relatively easy.

While heuristic search in the execution space is a straight-forward candidate for
modeling problem solving in a domain, it may not be the problem space that skilled
problem solvers typically use in this domain. The next step is to see if it is or not.

4.3.2 Look for Implicit Planning in Verbal Reports

The purpose of this step is to identify the nature of skilled problem solving in the
domain and in particular, to see if it deviates from heuristic search in the execution
space. To do so, one can collect concurrent verbal reports (Ericsson & Simon, 1984)
of skilled subjects solving problems in the domain. As Ericsson & Simon point out,
subjects should not explain what they are doing, but merely report what they are
thinking. To the extent that heuristic search in the execution space provides a good
-model, subjects’ successive verbalizations should correspond with successive states
in the execution space.

Howaver, subjects’ verbalizations could deviate from the execution space in a
umber of ways:

1. Multiple execution steps might be aggregated into a single
verbalization.

2. Successive verbalizations may skip steps in the execution
space. .

3. Verbalizations may not specify an execution state in full detail,
but rather only indicate some abstract featurs(s) of it.

‘Regularities in such deviations suggest “thinking steps” which are not represented
the execution space. From the perspective of the student, these thinking steps are
implicit part of the planning process which, in contrast to the exscution operators,
not be directly induced from worked out examples. In other words, when there is
licit planning in the thinking of skilled problem sclvers, there may be aspects of a

essful problem solving method which are hidden in the traditional curriculum.,

.$601i0r3 1.2, | showed that skilled geometry problem solvers skip steps in

\eCution space (#2 above) while developing an initial proof plan. The knowledge

4l allows them to do s0 is hidden in the geometry curriculum, While it is probably
ible to induce the execution operators from the steps of worked out geometry
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proofs in similar fashion to Neves’ (1978) program for Algebra, it is not possible to
apply a general weak-method like difference-reduction or means-ends analysis to
etfectively perform operator selection in the execution space of geometry. As the step
skipping in the verbal reports suggests, successful search in geometry involves
operators other than those in the execution spacs.

It is possible that no evidence for implicit planning is found in a domain, in other
words, skilled subjects work in the execution space. This seems likely in the domain of
algebra equation solving. In such a case, building a tutor for this domain may be
inappropriate. Conventional instruction may be adequate. In other words, finding no
implicit planning would suggest that the conventional written display of problem
solving steps corresponds fairly well with the thought steps necessary for successful
problem solving in that domain. in this case, well-motivated students may not have
much trouble in inducing the necessary operators. A cognitively-based intelligent
tutoring system (ITS) is unlikely to be much different from conventional instructicn and
thus, unlikely to help much. In fact, an ITS for algebra equation solving has been
compared with a conventional classroom and although students learn with this tutor,
they don’'t learn any better than students in a normal classroom {J. R. Anderson,
personal communication).

4.3.3 Model this lmplicit Planning

if evidence for implicit planning is found, the question becomes what is the knowledge
that is responsible for the non-execution space inferences? 1 can offer no sweeping
generalizations for how {o come up with the elements for a model of implicit planning.

i can only say that the diagram configuration schemas described in Section 1.3.1,
evolved from an initial attempt to apply ideas about abstract planning and abstract
problem spaces (Sacerdoti, 1974; Newell & Simon, 1872). In particular, the first
attempt at a model was based on applying the idea of equivaience classes as a way 1o
collapse nearby problem states into one,

In the case of verbalization types (1) and (2) above, it is possible that the implicit
‘planning knowledge is the result of composing execution operators. in section 1.6.3, |
-argued against a macro-operator interpretation of the genesis of DC-schemas. In the
process, a number of potentially general criteria were used to distinguish macro-
‘operators derived from execution operators from operators that merely bear a macro-
perator refationship with the execution operators. in the case of verbalization type
), the abstract problem space ideas are likely to be relevant. For example, Newaell
nd Simon's (p. 152, 1972) augmented problem space for crytarithmetic provides a

Gda)l of such verbalizations {e.g., abstract features of states like the number must be
ven).

3.4 Use the Model to Drive Tutor Design

- Once an accurate model of implicit planning has been developed the challenge is

¢ find a way to communicate this model to students. This issue is discussed in

ection 2.1. Since people seem to leamn best by doing, directly communicating it to

1em doesn't usually help much. By design, this model contains problem solving

focess that are not reflected in the notation of the current curriculum, Thus, itis
“Ssary to invent new notations which reify the previcusly hidden structures and

0e8ses. Thege notations can be the basis for interface design. For example,

gram configuration schemas became the basis for the icons in ANGLE's concept
4 and for the representation of concept instances in the proof graph. In addition,
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the computer medium affords the possibility of inventing novel actions which can more
directly reify the processes of the model. For example, the interface actions for

selecting a schema instance from the problem diagram reify the dlagram parsing
process (see Section 2.3.2 and Figure 2.2},

The goal of the design of tutoring strategies and messages should be to support
and articulate the problem solving method. In ANGLE, the tutoring strategy of
focussing on the schema level as the proper grain size for next-step advice is intended
to support the learning of the diagram configuration space (see Section 2.4.4 and
Figures 2.13-15). The use of terms iike “concept”, “parnt-statement”, and “ways-10-
prove” is intended to articulate crucial aspects of this novel notation.

- 4,3.5 Tune the Tutor implementation

While cognitive models can guide the design of the interface and tutoring components,
the process of implementing these guidelines is still somewhat of a black art. Thus, it
is important 1o test and tune the implementation. What seems right intuitively may not
be effective. In addition, because of the great complexity of such systems, all possible
interactions cannot be anticipated. Long pericds of use by multiple students is the
only way to “shakedown™ possible unanticipated interactions.

Two examples from the preliminary study are most notable. First, there was the
problem with bottom-out hints and more generally, with the confiict between interface
flexibifity and user confusion. Intuitively it had seemed that learning would be
facilitated by both (1) always requiring students to enter proof steps even in the case
that the tutor has told them what to do, and (2} always allowing students the flexibility
to ignore hints, for example, if they had something else they wanted to do. These two
notions led to the fact that students were able to ignore ANGLE's bottom-out hints.
Perhaps in pant because the interface was not ¢lear anough and in part because the
wording of the bottom-out hints was conceptually focussed rather than interface
focussed, students ignored these hints much more often and for a longer period of time
than was expected.

. Second, there was the problem with whole-statement encoding. Here again, there
‘were apparently well-motivated goals to (1) maximize the student's involvement, that

» by not doing the whole-statement encoding step for them, and (2) allow flexibility,
at is, allowing students to either explicitly perform or skip this step. However, the
result was, on one hand, added complexity to the interface with little or no added
Instructional impact and, on the other hand, an interaction within the generic hinting
heme that resulted in a confusing tutor messags.
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CONCLUSION

This thesis illustrates a program of basic and applied research that started by
understanding the nature of a complex problem solving domain and next, applied this
new understanding tc the development of improved instruction for that domain. This
instruction comses in the form of an intelligent tutoring system called ANGLE.

I conclude by reviewing the general contributions of this thesis as stated in the
introduction:

1. A new methodology for verbal protocol analysis involving the identification of
step-skipping with respect to the execution space of a domain.

In Section 1.1, | defined the execution space as the problem space that
corresponds one-to-one with the steps that problem solvers conventionally write down
in solving problems in that domain. | showed how one could use the execution space
pf a domain as the basis for analyzing verbal reports of subjects solving problems in
that domain. By looking for step-skipping with respect to the execution space (see
Section 1.2), one can identify implicit planning (i.e., thought that is not represented in
the conventional notations of the domain) and take a step toward both a deeper
understanding of the domain and a promising approach to improved instruction,

2. A new theory of geometry expertise (DC) that accurately describes human
behavior, has an efficient computer implementation, and pulls together a
number of empirical results on the nature of human experise.

In Section 1.3, | described DC, a model of skilled geometers informal and intuitive
proof planning skills. This mode! is based on knowledge components, diagram
configuration schemas, which merge perceptual knowledge about important geometric
categoties, conceptual knowledge about the properties and sufficiency conditions of
ese categories, and rule knowiedge of how these categories relate to the formal
nguage of geometry. Section 1.4 established the computational power and empirical
ccuracy of the model. Section 1.6.2 showed how DC’s perceptually-based schemas
rovide both a detailed explanation of experts’ ability, in certain domains, 1o solve
atively simple problems by pure forward inferencing and an integration of the
mpirical results indicating experts’ superior problem-state memory and their superior
roblem solving effectiveness.

3. A detailed characterization of the end-state of a complex iearning process
that challenges current learning theories and that can be used as a test-case
for new learning theories.

In Section 1.8.3, | discussed how straight-forward applications of learning theories
as ACT* or Soar are unlikely to produce the regularity in knowledge organization
ed by DC's schemas. 1n particular, this regularity seems to exclude deductive or
hbol-level learning processes which acquire expertise through the composition of
Cution space operators. Rather, it seems more likely that DC schemas (and

fhaps perceptually-based planning schemas in general} are learned through
HUClive or knowledge-level leaming processes. These inductive learning

~hanisms would include a perceptual chunking process capable of creating ever-
or diagram configurations (percepts in general terms), and a categorization
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process capable of attaching part-statements (properties) and ways-to-prove
{sufficiency conditions) to these percepts.

The fact that novice problem solvers exhibited DC-like step-stepping on the proof
pre-test (see Section 3.3.2) provides further evidence that learning in geometry
doesn't start with the execution space and then improve on this representation through
composing operators. Rather, very early in the iearning process, these novices
appear to have acquired some non-execution operators that, though sometimes
erroneous, bear a closer similarity with DC schemas than with the formal rules of

geometry.

4. A theory-based éppzcach to the design of the interface and tutoring
components of an intelligent tutoring system (ANGLE).

In Chapter 2, | showed how a cognitive mode! of implicit planning (DC) could be
translated into design specifications for the interface and tutoring components of an
intelligent tutoring system. Perhaps the most important aspect of this approach is how
a model of implicit planning can be used to design novel interface notations and
actions. By definition, a model of implicit planning must make use of representations
and processes that are not represented in the current notation of the domain. Thus,
with a model of implicit planning in hand, the tutor designer can use it to guide the
invention of new notations that more accurately reflect the processes of skilled
problem solving. As part of a tutor's interface, these notations deliver instruction
implicitly by providing students with a more cognitively meaningful way to think about

the domain.

5. An initial test of the hypothesis that the development of more accurate and
powerful cognitive models of problem solving can lead to major
improvements in the instruction of problem solving, particularly within the
context of an intelligent tutoring system.

While there have been numerous successful examples of applying cognitive
science to instructional design (e.g., Anderson, et. al., 1990}, these have been cases of
- comparing traditional (non-cognitive) instruction with cognitively-based instruction.

- These studies show the impact of designing instruction based on a cognitive model
_rather than on intuitions. The hypothesis above poses a more detailed question: Do

etter cognitive models lead to better instruction? :

By testing this hypothesis in the medium of intelligent tutoring systems, we can
ave both control over the exact nature of the instruction that is delivered (which is
ard to do with human teachers} and maintain some of the on-line flexibility of a
uman teacher (which cannot be done with text-based instruction). While the
reliminary study described in Chapter 3 did not conclusively affirm or negate this
hypothesis, it moves us a step closer. Despite the fact that much less effort has been
Put into ANGLE to this point, it is about equal in instructional effectiveness to the
Oreviously successful Geometry Proof Tutor. The hope is that by eliminating the
problems with ANGLE's implementation and expanding its curriculum, we ¢an exceed

he effectiveness of GPT and contirm the hypothesis.
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APPENDIX A

This ap;}endik includes the matenals used in this study:

Handouts: Rule Summary Sheet, Tracking Sheet, Concept Summary Sheet
{ANGLE group only), ANGLE Text {ANGLE group only), GPT Text
{GPT group only). A

, Tests: Proof Construction A&B, Hidden Figures A&B, Truth Judgment

~ A&B, and Proof Checking A&B.




RULE SUMMARY SHEET .
I A
DEF-PERP; AB LED
<=
rtZABC c r B
B
' A
CONG-ADJ- LABC & ZABD
ANGS: Co=
A6 Ll €o P s N
' B
B Y
CORRES- AABC = AXY?
PARTS: ==
ABEXY BCEYZ,CAETY,
LABL & ZXYZ, LECAE LYZIX, A C 7
LCAB S £ZXY
8 Y
58S ABERY,BCEYZ,. and ACE ¥7
=
AABC £ AXYZ
A C z
B ¥
SAS: AB =XV BC 8 V7, LABC B L¥Y2 ‘
=
AABC £ AXYZ
A C zZ
‘ ‘ B Y
. ASA: LBAC & £YXZ, AC £ X7, LACB B LRZY
=
' HABC £ AXYZ
A C 7
B Y
AAS: LBAC & LYRZ, LACB E LXZY,BC & ¥Z
. e
HABC £ AXYZ
A C 7
A

REFLEXIVE: Segment AB is in the diagram
i
_ AB E &B C D



More Detailed Rule Review:

DEF-PERP:
Two lines are perpendicular, A8 L €D,
ifft  they form right angles, vrt£ABC and rtZABD.

CONG-ADJ-ANGS:
Angles formed by connecting lines are
congruent, ZABC & ZABD,

iff  the lines are perpendicular, AB 1 ©D.

CORRES-PARTS

If two triangles are congruent, AABC £ ANYZ,

then all the corresponding sides are congruent:
AE 2 Y, BC £ ¥7, and €A £ ZX, and all the
corresponding angles are congruent: ZABC £
LXYZ, LBCA E LYZX, and LCAB B LZXY.

888: ,

If three sides of one triangle, A&, BT, and AT,
are congruent to the corresponding sides of
another triangle, XY, ¥Z, and ¥Z, that is, AB &
¥¥,.BC £Y2, and AC & X2Z,

hen the triangles are congruent: AABC E AXYZ.

f two sides and the included angle of one
triangle, AE, BT, and £LABC, are congruent to
the corresponding parts, ¥¥, ¥Z, and £Xvz, of
another triangle, that is, AE & XY, BC £ YZ, and

, LRBC E L¥YE,

then the triangles are congruent: AABC £ AXYZ.

pendicular.

A
SN ¢ N
c—l—p

A
c—Dp
B

s W
A 4
A 4

ff means if and only if and indicates the rule can be applied in both directions. For
ample, the DEF-PERP rule is really two rules: 1) If two lines are perpendicular then
form right angles and 2) If two lines form right angles then they are




ASA: ot

If two angles and the included side of one
triangle, £ABC, ZBCA, and BT, are congruent
to the cotresponding parts, £XY2, £YZ%, and
¥Z, of another triangle, that is, LABC £ £x¥z,
£BCA £ £vzx, and BT £ ¥2,

then the triangles are congruent: AABL £ AXYZ.

- AAS: _

If two angles and a non-included side of one
triangle, LABC, £LBCA, and A8, are congruent
to the corresponding sides of another
triangle, £%vz, Zvzx, and Y, that is, ZABC &
LXYE, LBCA & L¥ex, and AB £ XY,

then the triangles are congruent: AABC £ AXYZ.

REFLEXIVE:

If segment AB appears in the diagram,

then ABEAB.

A 4
V4 W



Tracking Sheet

Name: i Date started:
id#:__ '

Here are the things you'll be doing as you work through the futor.
Please use this sheet to keep track of what you've done, so that
when you come in on the next day you'll know where you left off. On
the following page, please record the time spend with the tutor on
each day and which problems you did on that day.

Please check off each problem as you do it

1. Review DEF-PERP.
2. Do problems:
[1 PROB150
[1PROB152
3. Review CONG-ADJ-ANGS.
4. Do problems:
[1N1
[ ] PROB151
[]P1
[]N2
5. Review CORRES-PARTS.
6. Do problem:
[IN3
Review 588, SAS, ASA, and AAS,
. Do problems:
[ ] PROB310 [
[1N4 [1P7
[1N5 [
[]P5
9. Review REFLEXIVE.
10. Do problems:

[ ] PROB311 [IN15
[] PROB352 [1NS
[ ] PROB353 [1N8
[1N7 [1N10
[]P2 []N11
[]1P3 []N12
[IN16 [1N13
[1N17 [1N14




PROBLEMS COMPLETED

TIME

SPENT

FINISH
TIME

TIME

DAY | START

i i & il i
VIR S e
i e
Semelas 2> S
e 5 R
i - -

L
¥ o




PRQEB1T

GIVENS: CA L OE

E GOAL: vt ZABE
PRQOR152

GIVENS: rt ZCDA

coal: DCLEA

GIVENS: ZJKM 2 ZILKM

GOAL: vt ZLKM

- N3
) 3 GIVENS: &.ABC £ AEFG
CE G

N4
GIVENS: ZFGH E ZKLM

GOAL: ZG6FH 2 ZLMK

Lo

PROB151

D

GIVENS: BB L ED

GOAL: LABD E ZEBA

GIVENS: ZRPU E Z5PN

GOAL: RS

7]

1

GIVENS: Ka L PR
vt ZJKQ

R GOAL: LJKQ E LLKQ

PROB317

GIVENS:

$I58l
mmin
i

EC

A
GOAL: AGFE £ ADCA

NS
GIVENS: LAXB £ ZCXD
BXECX
ZABX E ZDCX

GOAL: RA 2 ¥D




GIVENS: AJKN £ AJPN

ZKLNE ZiopP
ZLNK £ ZPNO

p GOAL: ALKN E AOPN

NP

GIVENS: ALBH E LSHP
GJENT
AHKHS £ ARPQ

GOAL: ZJLEG B ZOSH

PRQB311

Z GWENS; BY

eom——

W

E-

I
I
NN

GOAL: AWXY E ZAY

PROB353
A GIVENS: ZCED B ZACE
LAEC E ZDCE

GOAL: € & ER

B2

GIVENS: APSR E APOGR

GOAL; &VWSR E AWOR

GIVENS: & ABD &= AHEFH
ABCD & AFGH
GOAL; AABC £ AEFG
A D
F C
E H G
GIVENS: Ascs £ ATZY
EX7
;:;:BA g Z WYX
GOAL: ZADB € LXWY
PROB352
W GIVENS: RW 27
Wz 2 XY
Y  GOAL £ZXVZE LZWK
N7
L
GIVENS: JL 8 JK
J K LLIK E LMJK
coAl: LM L 3K
M
B3
A

GIVENS: &DAC E ABCA
LZAKD 2 ZBKLC

GOAL: AAKD E ACKB



- Ni6
— GIVENS: ZAEB % LCED
A ZABC E ZDCB
BAE=CD
D

GOAL: AABC & ADCE

N1
, 5 ;G GIVENs: AC L BD
~ AD £ BC
LFAB & £GCB
AF L0

G GOAL: ZAFB £ ZCGB

N8

GIVENS: rtZLOQR
LZFHRR £ £PRN

GOAL: ZNLP Z ZRLP

N11
C
GIVENS: AC & BC
AK £ BK
GOAL: ytZADC
B
N13

111
N A

m
b

J GIVENS: JH & HL
Ml &
ZJHK MHL
GOAL: &JKL LMJ
M

K NG
G HJ  GOAL ZLFKG & £HKJ
B
#

GIVENS: K

LZKGJ Z ZKHF
LFGK E £JHK

&l

-
o

N10

GIVENS: DE & EB
LAED E ZBEC
LADBE ZCBD

F
A

¥

2
R

|

c GIVENS: LCADZ £BDA
ZBAD & ZCDA
GOAL: ABECO
L}

N1

5,



CONCEPT SUMMARY SHEET

PERPENDICUIAR-ADJACENT-ANGLES
Configuration:
D
, A—p—¢C
Whole-statement: AC L ED
: . Part-statements: 1.vrt LABD
i 2.rt ZCBD
3. ZABD E ZE€BD
Ways-to-prove: DEF-PERP: {1} {2}
CONG-ADJ-ANGS: {3}
-
PERPENDICULAR-CROSS
Configuration: A
f{f‘z%ff - B X P
i c
Whole-statement: ACLED
Part-statements: 1.rt ZAXB
2.rt ZBXC
. vt ZCXD
4., rt LAYD
5, ZAXB 2 /BXC
6. ZBXU E 2ZCXD
7. ZCXD & ZAXD
8, ZAXD 2 ZAXB
Ways-to-prove: DEF-PERP: {1} {2} (3} {4}
CONG~ADJ~ANGS: {5} {6} {7}
{8}




CONGRUENT-TRIANGLES

Configuration:
A X

8 Cc Z Y
Whole-statement: AABL E AXYZ
Part-statements: 1.ABE XY

2.BCEYZ

3.CAEZX

4. LBE LY

5. LCE L2

6. LAE LK
Ways-to-prove: $85: {12 3}

SASI{142)(253)¥{36 1}
ASA:{146}{245}{356}
AAS: {145} {156} {246}

{256}{345){3 46}

Other related rules: CORRES-PARTS

CONGRUENT-TRIANGLES-SHARED-SIDE
Configuration:

w

Whole-statement: AEYH E AXZW

Part-statements:

LTEWE L7
5, ZRMY & ZuwzZ

Ways-to-prove: 535: {12}
SAS: {14} {2 5)
ASA: {45}
AAS: {3 4} {3 5)

Other related rules: CORRES-PARTS
REFLEXIVE




81

diagram does not appear to be a great difficuity, especially in comparison to the
difficulties that arose from allowing and sometimes encouraging the explicit whole-
statement encoding step.

4.1.2 Improving Tutoring Messages and Strategles

4.1.2.1 Adding Buggy Ways-to-prove. One of the problems with ANGLE's tutoring
messages was that the execution feedback was quite simple and sometimes
misieading. In particutar, this feedback did not respond well to common bugs, like
trying to prove triangles congruent using two sides and a non-included angle. These
situations are captured in GPT by matching them against particular “buggy” production
rules. A similar thing can be done in ANGLE by elaborating the schema
representation to include buggy ways-to-prove in addition to the existing {non-buggy)
ways-to-prove, Tutoring messages can then be attached 1o these, just like they are
attached to buggy rules in GPT.

4.1.2.2 What's the Proper Role of Execution Training? One important question that
was considered before the study and still remains unanswered is; what is the proper
role of execution training? One could take the view that proof instruction in high
school geometry should emphasize proof planning and not be too concerned about
proof execution, that is, whether students get the formal details exactly right. In fact, a
recent proposal for high school standard suggests a deemphasis on formal proof and
more emphasis on informal proof (Romberg, 1987). However, at least for comparison
sake, it seemed important that the two groups (ANGLE and GPT students) be tested on
the same standard two-column format. Thus; it also seemed important to give training
within ANGLE on execution as well as proof planning.

Following the cognitive model, ANGLE’s feedback scheme always suggests -
planning moves first and only suggests execution moves once a compiete plan has
been found. However, consistent with the effort to make the system flexible, ANGLE
allows students to integrate planning and execution. In fact, students rarely completed
planning before beginning execution. One measure of this is the percent of inferences
that occurred after execution began, but before planning was finished, Thus, for
example, if all the planning is done first this percentage should be 0. On average,
47% of students’ inferences were in this mixed stage. Students' tendency to mix
planning and execution was not quite significantly correlated with post-test
performance (p = .06). However, the pattern is that the students who began execution
sarly aiso scored better on the post-test. This is probabiy a reflection of students’ pricr
familiarity with the execution space and the good students’ better facility with it.

Another Issue relating to the role of the execution fraining in ANGLE, is the
“complexities to the interface that it added. Again such complexities presented
students with a learning task that distracted them from geometry.

_ Acouple of possibilities may be pursued with respect to this issue. Oneisto
liminate the execution training from ANGLE and simply focus on tutoring proof plans.
 would be interesting to see how such instruction would transfer to the task of coming
P with a completely detailed two-column proof. Another possibility is to have the tutor
nforce the planning first approach of the cognitive model. Only after completing a

lan would students be aliowed to do the proof execution.
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4.2 IMPROVING KNOWLEDGE MEASURES

4.2.1 Improving the Truth Judgement Test

It was hoped that the Truth Judgment test would measure students’ planning abilities
in a way that wouldn't be masked by lack of execution abilities. Having such a testis
still desirable, however, as it turned out students did not appear to spontaneously see
the relevance of proof planning to answering Truth Judgment items. Part of the reason
may be due to the fact that as YES-NO type questions these items had the appearance
of being easy, and thus, perhaps it did not occur to students that anything as difficult as
doing proof planning would be relevant. In addition, students were given only 15
minutes to do the 17 items on this test (in fact, most finished in about 10 minutes). Four
of these items could be solved with proofs about as difficult as the four proof problems
on the Proof Construction test which students were given 35 minutes to solve. In other
words, students really didn't have time to do proofs to help sclve these problems.

A number of things ¢an be dons to encourage proof planning. First, an illustration
shouid be given to students, prior to taking the test, of how planning a proof can help
answer these questions. Second, fewer problems should be given with more time
allowed for each. It should be emphasized to students that they have lots of time to
think hard about each one of the items. Third, students can be asked to give a reason
for their answer. In the case that they answer YES, they should provide a proof sketch.
in the case that they answer CAN'T TELL, they should provide a counter example.
Examples of both types of reasons should be given prior to the test.

4.2.2 The Need for a Measure of Schema Knowledge

Both GPT and ANGLE are primarily focussed on teaching the process of constructing
proofs and not on teaching the declarative knowiedge of the basic operators, rules in
the case of GPT and schemas/concepts in the case of ANGLE. To the extent that
students don't have a reasonable grasp of this basic knowledge, they are likely to

- have trouble. This situation is potentially more problematic in ANGLE because the
units of declarative knowledge in ANGLE, the concepts: (1} are not explicitly taught in
the standard curriculum and (2) are much bigger than the formal rules which are the
declarative knowledge units in GPT. It seems possible that the effectiveness of
ANGLE might interact with the level of students’ prior knowledge of the concepts.
Thus, it seems important to have a measure of this knowledge.

Such a test might be made up of items, much like the easy items on the Truth
Judgment test, in which the student is given a diagram configuration and some facts
about it, and asked if a particular conclusion follows. One type of item would test
knowledge of the part-statements by providing the whole-statement as the given and a
possible pan-statement as the goal. Ancther type of item would test knowledge of the
ways-to-prove by providing sets of part-statements as the givens and the whole-
statement as the goal.

4.3 RESEARCH SUMMARY

his final section provides a recap of the research agenda carried out in this thesis.
NOwaver, rathar than simply summarizing, I've attempted to generalize the key steps
nd present them as a prescription for tutor design. Certainly there are other

eoretically motivated routes to successful tutor design, not to mention getting there
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by good intuitions or serendipity. This prescription is provided merely as one possible
route that may (1) be directly applied in some domains or {2) be used as a departure
point for developing related approaches in other domains.

The approach can characterized in five steps:

1. Identify the execution space. ,
2. Look for implicit planning in verbal reports.

3. Model this implicit planning.

4. Use the model to drive tutor design.

5. Tune the tutor implementation.

Below | discuss the significance of each step, suggest how it might be done in
general, and review how it was done in this project.

4.3.1 Identify the Execution Space

This step sets the stage for step 2 where one locks for underlying problem solving
processes that are effectively hidden in current instruction. First, we need to know
what aspects ¢f the problemn solving process are revealed, at least implicitly, by current
instruction. This is the task of identifying the execution space. The execution space for
a domain is the problemn space most directly induced from the way problem soiution
steps are typically or conventionally written down!, In other words, the operators of
this space correspond one-to-one with the written problem steps.

As discussed in Section 1.1, the exacution space operators for geometry are the
various definitions, postulates, and theorems that appear as the “reasons” in the steps
of the conventional two-column proof format. The execution space operators for
algebra equation solving are the various rules {e.g., You can add the same number to
‘both sides) for manipulating equations. In physics problem solving (e.g., the kind
analyzed by Larkin, et. al., 1980), the execution space operators might be the relevant
physics formuias.

- Another potential guide to the operators of the execution space is to look at the
units of knowledge that are provided to students in their textbooks or lectures. Quite
often, these units of knowledge correspond with the written problem steps. For
example, the traditional geometry curriculum is organized around presenting and
llustrating the very same rules that appear as reasons in two-column proof solutions.
A similar situation is apparent in algebra and physics.

A straight-forward way to model problem solving in these domains is as a heuristic
search in the execution space — the only trick is to find appropriate operator selection
heuristics. From the perspective of a student, 1o the extent that the execution space
provides a good characterization of skilled problem solving, his or her learning job is
made easier. By definition, execution operators can be induced fairly directly from the
steps of worked out examples and may be supported by verbal descriptions in
textbooks and lectures. For example, consider algebra equation solving. An example
rked out solution is shown in Table 4.1.

TNewell and Simon {1972, p. 144) refered to a “basic problem space” and gave examples of onein a
mber of domains. it is evident from their examples thal what they meant by a basic problem space is
lar {o what | mean by an execution space, however, they did not explicitly define it.
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Table 4.1 An worked solution in the domain of Algebra equation solving.

3x - 13 = 2{x - 3)

3x -~ 13 = 2x ~ 6 Distribute

3x - 13 -2x = - 4§ x's to left sgide

3x - 2x .= = & % 13 Num's to right side
x = 7

In this domain, the execution operators can be fairly directly induced from the steps
in worked out examples like that in Table 4.1, This claim is supported by the fact that
an early machine learning program did exactly that (Neves, 1978). in addition, the
general difference-reduction heunstic turns out to be an effective means of operator
selection. Because this domain independent weak-method works in this domain,
learning operator selection is relatively easy.

While heuristic search in the execution space is a straight-forward candidate for
modeling problem solving in a domain, it may not be the problem space that skilled
problem solvers typically use in this domain. The next step is to see if it is or not.

4.3.2 Look for Implicit Planning In Verbal Reports

The purpose of this step is to identify the nature of skilled problem solving in the

- domain and in particular, to see if it deviates from heuristic search in the execution
space. To do s0, one can collect concurrent verbal reports (Ericsson & Simon, 1984}
of skilled subjects solving problems in the domain. As Ericsson & Simon point out,
subjects should not explain what they are doing, but merely report what they are
thinking. To the extent that heuristic search in the execution space provides a good
model, subjects’ successive verbalizations should correspond with successive states
in the execution space.

However, subjects’ verbalizations could deviate from the execution space in a
number of ways:

1. Multiple execution steps might be aggregated into a single
verbalization.

2. Successive verbalizations may skip steps in the execution
space.

3. Verbalizations may not specify an execution state in full detail,
but rather only indicate some abstract feature(s) of it.

Regularities in such deviations suggest “thinking steps”™ which are not represented
ti}e execution space. From the perspective of the student, these thinking steps are
n implicit part of the planning process which, in contrast to the execution operators,
cannot be directly induced from worked out examples. In other words, when there is
plicit planining in the thinking of skilted problem solvers, there may be aspects of a
uccessful problem solving method which are hidden in the traditional curriculum,

In Section 1.2, | showed that skilled geometry problem solvers skip steps in
ecution space (#2 above) while developing an initial proof plan. The knowledge
at allows them to do so is hidden in the geometry curricufum. While it is probably
sible to induce the execution operators from the steps of worked out geometry
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proofs in similar fashion to Neves' (1978) program for Algebra, it is not possible to
apply a general weak-method like difference-reduction or means-ends analysis to
effectively perform operator selection in the execution space of geometry. As the step
skipping in the verbal reports suggests, successful search in geometry involves
operators other than those in the execution space.

it is possible that no evidence for implicit planning is found in a domain, in other
words, skilled subjects work in the execution space. This seems likely in the domain of
algebra equation solving. In such a cass, building a tutor for this domain may be
inappropriate. Conventional instruction may be adequate. In other words, finding no
implicit planning would suggest that the conventional written display of problem
solving steps corresponds fairly well with the thought steps necessary for successtul
problem solving in that domain. In this case, well-motivated students may not have
much trouble in inducing the necessary operators. A cognitively-based intelligent
tutoring system (ITS) is unlikely to be much different from conventional instruction and
thus, uniikely to help much. In fact, an ITS for algebra equation solving has been
compared with a conventional classroom and although students learn with this tutor,
they don’t learn any better than students in a normal classroom (J. R. Anderson,
personal communication).

4.3.3 Model this Implicit Planning

if evidence for implicit planning is found, the question becomes what is the knowledge
that is responsible for the non-execution space inferences? | can offer no sweeping
generalizations for how to come up with the alements for a model of implicit planning.

| can only say that the diagram configuration schemas described in Section 1.3.1,
evolved from an initial attempt to apply ideas about abstract planning and abstract
problem spaces (Sacerdoti, 1974; Newell & Simon, 1972). In particular, the first
attempt at a mode! was based on applying the idea of equivalence classes as a way to
collapse nearby problem states into one.

In the case of verbalization types (1) and {2) above, it is possible that the implicit
planning knowledge is the result of composing execution operators. In section 1.6.3, |
argued against a macro-operator interpretation of the genesis of DC-schemas. In the
process, a number of potentially general criteria were used to distinguish macro-
operators derived from execution operators from operators that merely bear a macro-
operator relationship with the execution operators. In the case of verbalization type
(3), the abstract problem space ideas are likely to be relevant. For example, Newell
-and Simon’s (p. 152, 1972) augmented problem space for crytarithmetic provides a
mad_e}i of such verbalizations (8.9., abstract features of states like the number must be
‘even).

3.4 Use the Model to Drive Tutor Design

Once an accurate model of implicit planning has been developed the challenge is
o find a way to communicate this model to students. This issue is discussed in
ection 2.1. Since people seem to learn best by doing, directly communicating it to
hem doesn't usually help much. By design, this model contains problem solving
focess that are not reflected in the notation of the current curriculum, Thus, it is
ecessary to invent new notations which reify the previously hidden structures and
focesses. These notations can be the basis for interface design. For example,
lagram configuration schemas became the basis for the icons in ANGLE’s concept
i and for the representation of concept instances in the proof graph. In addition,
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the computer medium affords the possibility of inventing novel actions which can more
directly reify the processes of the model. For example, the interface actions for
selecting a schema instance from the problem diagram reify the diagram parsing
process (see Section 2.3.2 and Figure 2.2).

The goal of the design of tutoring sirategies and messages should be to support
and articulate the problem solving method. In ANGLE, the tutoring strategy of
focussing on the schema level as the proper grain size for next-step advice is intended
to suppott the learning of the diagram configuration space (see Section 2.4.4 and
Figures 2.13-15). The use of terms like “concept”, “part-statement”, and “ways-to-
prove”™ is intended to articulate crucial aspects of this novel notation.

4.3.5 Tune the Tutor Implementation

While cognitive models can guide the design of the interface and tutoring components,
the process of implementing these guidelines is still somewhat of a black art. Thus, it
is important to test and tune the implementation. What seems nght intuitively may not
be effective. In addition, because of the great complexity of such systems, all possible
interactions cannot be anticipated. Long perods of use by multiple students is the
only way to “shakedown” possible unanticipated interactions.

Two examples from the preliminary study are most notable. First, there was the
problem with bottom-out hints and more generally, with the conflict between interface
flexibility and user confusion. Intuitively it had seemed that learning would be
facilitated by both (1) always requiring students 10 enter proof steps even in the case
that the tutor has told them what to do, and (2) always aliowing students the flexibility
to ignore hints, for exampile, if they had something eise they wanted to do. These two
notions led to the fact that students were able to ignore ANGLE's bottom-out hints.
Perhaps in part because the interface was not clear enough and in part because the
wording of the bottom-out hints was conceptually focussed rather than interface
focussed, students ignored these hints much more often and for a longer period of time
than was expected.

Second, there was the problem with whole-statement encoding. Here again, there
were apparently well-motivated goals to (1) maximize the student's involvement, that
is, by not doing the whole-statement encoding step for them, and (2) allow flexibility,
that is, allowing students to either expifcmy perform or skip this step. However, the
result was, on one hand, added complexity to the interface with little or no added
instructional impact and, on the other hand, an interaction within the generic hinting
scheme that resulted in a confusing tutor message.
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CONCLUSION

This thesis itlustrates a program of basic and applied research that started by
understanding the nature of a complex problem solving domain and next, applied this
new understanding to the development of improved instruction for that domain. This
instruction comes in the form of an intelligent tutoring system called ANGLE.

I conclude by reviewing the general contributions of this thesis as stated in the
introduction:

1. A new methodology for verbal protocol analysis involving the identification of
step-skipping with respect to the execution space of a domain.

In Section 1.1, | defined the execution space as the problem space that
corresponds one-to-one with the steps that problem solvers conventionally write down
in solving problems in that domain. | showed how one could use the execution space
of a domain as the basis for analyzing verbal reports of subjects solving problems in
that domain. By looking for step-skipping with respect to the execution space {see
Section 1.2), one can identify implicit planning (i.e., thought that is not represented in
the conventional notations of the domain) and take a step toward both a deeper
understanding of the domain and a promising approach to improved instruction.

2. A new ihéory of geometry expertise {DC) that accurately describes human
behavior, has an efficient computer implementation, and pulls together a
number of empirical results on the nature of human expertise.

In Section 1.3, | described DC, a mode! of skilled geometers informal and intuitive
proof pianning skills. This model is based on knowledge components, diagram
configuration schemas, which merge percepiual knowledge about important geometric
categories, conceptual knowledge about the properties and sufficiency conditions of
these categories, and rule knowledge of how these categories relate to the formal
- language of geometry. Section 1.4 established the computational power and empirical
- accuracy of the model. Section 1.6.2 showed how DC's psrceptually-based schemas
- provide both a detailed explanation of experts' ability, in certain domains, to solve
relatively simple problems by pure forward inferencing and an integration of the
empirical results indicating experts’ superior problem-state memory and their superior
prablem solving effactiveness.

3. A detailed characterization of the end-state of a complex learning process
that challenges current learning theories and that can be used as a test-case
for new learning theories.

In Section 1.8.3, | discussed how straight-forward applications of learning theories
such as ACT" or Soar are unlikely to produce the regularity in knowledge organization
reflected by DC's schemas. In particular, this regularity seems to exclude deductive or
Symbol-level learning processes which acquire expertise through the composition of
execution space operators. Rather, it seems more likely that DC schemas (and
Perhaps perceptually-based planning schemas in general) are learned through
ductive or knowledge-level learning processes. These inductive learning
echanisms would include a perceptual chunking process capable of creating ever-
rger diagram configurations (percepts in general terms}, and a categorization



g

process capable of attaching part-statements (properties) and ways-lo-prove
{sufficiency conditions) to these percepts.

The fact that novice problem soivers exhibited DC-like step-stepping on the proof
pre-test (see Section 3.3.2) provides further evidence that learning in geometry
doesn start with'the execution space and then improve on this representation through
composing aoperators. Rather, very early in the learning process, these novices
appear to have acquired some non-execution operators that, though sometimes
erroneous, bear a closer similarity with DC schemas than with the format ruies of

geometry.

4. A theory-based approach to the design of the interface and tutoring
components of an intelligent tutoring system (ANGLE).

in Chapter 2, | showed how a cognitive model of implicit planning (DC) could be
transiated into design specifications for the interface and tutoring components of an
intelligent tutoring system. Perhaps the most imporiant aspect of this approach is how
a model of implicit planning can be used to design novel interface notations and
actions. By definition, a model of implicit planning must make use of representations
and processes that are not represented in the current notation of the domain. Thus,
with a model of implicit planning in hand, the tutor designer can use it to guide the
invention of new notations that more accurately reflect the processes of skilled
problem solving. As part of a tutor's interface, these notations deliver instruction
implicitly by providing students with 2 more cognitively meaningful way to think about
tha domain,

5. An initial test of the hypothesis that the development of more accurate and
powerful cognitive models of problem solving can lead to major
improvements in the instruction of problem solving, particularly within the
context of an intelligent tutoring system.

While there have been numerous successiul examples of applying cognitive
science to instructional design {(e.g., Anderson, et. al., 1980), these have been cases of
comparing traditional (non-cognitive) instruction with cognitively-based instruction.
These studies show the impact of designing instruction based on a cognitive model
rather than on intuitions. The hypothesis above poses a more detailed question: Do
better cognitive models lead to better instruction?

By testing this hypothesis in the medium of intelligent tutoring systems, we can
have both control over the exact nature of the instruction that is delivered {which is
hard to do with human teachers) and maintain some of the on-line flexibility of a
human teacher {which cannot be done with text-based instruction). While the
preliminary study described in Chapter 3 did not conclusively affirm or negate this
hypothesis, it moves us a step closer. Despite the fact that much less effort has been
Put into ANGLE to this point, it is about equal in instructional effectiveness to the
eviously successful Geometry Proof Tutor. The hope is that by eliminating the
oblems with ANGLE's implementation and expanding its curriculum, we can exceed
8 effectiveness of GPT and confirm the hypothesis.
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APPENDIX A

This appendix includes the materials used in this study:
Handouts: Rule Summary Sheet, Tracking Sheet, Concept Summary Sheet

(ANGLE group only), ANGLE Text (ANGLE group only}, GPT Text
(GPT group only). .

Tests: Proof Construction A&B, Hidden Figures A&B, Truth Judgment
A&B, and Proof Checking A&B.
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RULE SUMMARY SHEET

AB LTO
<=
rtZABC

LABC E ZABD
<=
AB LD

AABC E AXY?
Y. BECE2YZ,CAE Zx,
LBBC B LXYE, LBCA B LYZX,

g

ZBAC E Zy%2, AC B X7, LACB E £¥2Y
m—3y
ALBC 8 AXYZ

LBAC & LYRT, LACB & ZXZY,BC EYZ
=
AABC B AXYZ

Segment AF is in the diagram
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More Detailed Rule Review:

DEF-PERP:
Two lines are perpendicular, A6 1 €0,
ifft  they form right angles, rt£ABC and rt£ABD.

CONG-ADJ-ANGS:
Angles formed by connecting lines are
congruent, LABC € ZABD,

iff the lines are perpendicular, AF L €.

CORRES-PARTS

If two triangles are congruent, HABC & &XYZ,

then all the corresponding sides are congruent:
AE & XY,BC & ¥z, and €A & 7X, and all the
corresponding angles are congruent: ZABC &
LAYZ, ZBCA & LYZX, and ZCAB & LZRY.

8S88:

If three sides of one triangle, AE, BC, and AT,
are congruent to the corresponding sides of
another triangle, XY, YZ, and X2, that is, AB &
*Y,BC£¥7,and AC B X2,

then the triangles are congruent: AABC B AXYZ.

SAS:

If  two sides and the included angle of one
triangle, AB, BT, and ZABC, are congruent to
the corresponding parts, X7, ¥Z, and £xvZ, of
another triangle, that is, AB £ ¥¥,BC £ ¥Z, and
LABC E LXYe,

hen the triangles are congruent: AABC ¥ AXYZ.

pendicular.

A
o
¢c—=—p

A
c—ALhpp
B

s W
PLe
A4

iff means if and only if and indicates the rule can be applied in both directions. For
mple, the DEF-PERP rule is really two rules: 1) Jf two lines are perpendicular rthen
¥ form right angles and 2) If two lines form right angles then they are



ASA: / B

If two angles and the included side of one
triangle, ZaBc, £ZBCA, and BT, are congruent
o to the corresponding parts, £%x¥z, £YZX, and
- ¥Z, of another triangle, that is, ZaBC & zxvz, A C z

LBCA & ZvzX, and BT 8 ¥,
then the triangles are congruent: AABC 8 AXYZ.

AAS: : B
if two angles and a non-included side of one

triangle, ZABC, ZBCA, and AB, are congruent

to the corresponding sides of another

triangle, £%vz, £ZvzX, and XV, that is, zaBC & A C

LXYZ, LBCA £ £¥2%, and AB £ XV,
~ then the triangles are congruent: AABC 2 AXYZ.

REFLEXIVE: A
If segment AB appears in the diagram,
then ABE AB.




Tracking Sheet

Name: Date started:

Id#:._

Here are the things you'll be doing as you work through the tutor.
Please use this sheet to keep track of what you've done, so that
when you come in on the next day you'll know where you left off. On
the following page, please record the time spend with the tutor on
each day and which problems you did on that day.

Please check off each problem as you do it.

1. Review DEF-PERP.
2. Do problems:

[ 1 PROB150

[] PROB152
3. Review CONG-ADJ-ANGS.
4. Do problems:

[] N1

[ ] PROB151

[]P1

[]N2
5. Review CORRES-PARTS.
6. Do problem:

[1N3
7. Review SSS, SAS, ASA, and AAS.
8. Do problems:

[ ] PROB310

[] N4

[1NS

[1P5
9. Review REFLEXIVE.
10. Do problems:
PROB311
PROB352
PROBBSB
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PROBLEMS COMPLETED

TIME
SPENT

FINISH
TIME

TIME

DAY | START

Bt T 3
e —
TR PRI 5 :_Nm b




PBROB150 . PROB151
A
e s e D g
GIVENS: TA 1 OF GIVENS: AB L ED
B_E GOAL: rtZABE :W— - GOAL: LABDE LEBA
C E
PROB152 N1
GIVENS: rtZCDA S  GIivENS: LRPQ E ZSPO
goaL: DL ER P GOAL: REZ 0N
R N
Pt N2
J J |2
GIVENS: ZJKM S ZLKM K Q GIVENS: KQ 1 PR
rt ZJKQ
GOAL: rtZLKM
M L =] GOAL: LJKQ = 2ZLKQ
N3 PR 1
GIVENS: &ABC § AEFG G D civens: CDETE
AD S EG
GOAL: RB & EF /\ /\ TAEFE
G F
EC A GOAL: AGFE & ADCA
N4 N&
GIVENS: LFGH £ ZKLM GIVENS: LAXB E ZCXD
BF 2 M BX & €X
GHEIX LABX E ZDCX
GOAL: ZGFH 2 /LMK GOAL: ¥R & X0
M A B cC D




£5 C

GIVENS: & JKN E &JPN
LKLN E ZLOP
ZLNK E _ZPNO

p GOAL: ALKN ¥ &H0PN

N 0
P7
GIVENS: LLBH & ZSNP
R 6J £ Na

LHKH] B ARPQ

GOAL: ZJLG & ZOSK

PROB311

Z GIVENS: WEE‘?
WX ERZ

GOAL: AWXY E AZRY

PROB353

A GIVENS: ZCED & ZACE
ZAEC & LDCE

£z

GIVENS: APSR £ &HPQR

GOAL: &AWSR E AWAR

B Pg
GIVENS: & ABD £ AEFH
ABCD # AFGH

GOAL: A&ABL 2 AEFG
E C

GIVENS: ABCD & AYZY
AC £ X7
LDBA E 2 WYX

GOAL: ZADB E LXUY

DX W

PROB352

GIVENS: XW & 7V
WZ s XY

Y GOAL LEYZ S J7ux

N7
GIVENS: JL 2 JK
LLJIK B ZMJK

GOAL: [M L JF

GIVENS: ADAC E ABCA
LAKD E £BKC

GOAL: &&KD = HCKB
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Ni6 . N1/
GIVENS: ZAEB & ZCED J GIVENS: ;ﬁﬁs"—tﬁi
A ZABC £ ZDCB =
‘ BAECD ZJHK £ ZMHL
D .
GOAL: AABC E ADCE GOAL: AJKL E ALMJ
. y [
N1 N9

G GIVENs: AC 1 BD

: AD £ DC S
ZFAB & ZGCB GIVENS: !FEI'_IE £ %
AF £CG g
LXGJ E LXHF
C GOAL: LAFB E ZCGB LFGK & ZJHK
G

E U GOAL: ZFKG & ZHKJ
N8 N10
GIVENS: rtZLOR A B  GIVENS: DEEEB
ZPNR & ZPRN ZAED Z ZBEC
ZADB = ZCBD
GOAL: ZNLP &
4NLP S LRLP D C GOAL: BB & €D
11 12

GIVENS: AC £ BC

AKEBK B € GIVENS: ZCADE £BDA
Z/BAD & ZCDA
GOAL: rt ZADC '
GOAL: AB &
A D

ABECTD
B

Ni3 14

GIVENS: JO £KQ C GIVENS: AC £ AD
G JF EKG CK =D
N ZJFG & LKGF A 5
GOAL: ZBCK & ZBDK
GOAL: Fg £ Ga




CONCEPT SUMMARY SHEET

PERPENDICULAR-ADJACENT-ANGLES
N Configuration:
D
a—l ¢
Whole-statement: AC L B0
Part-statements: 1.rt LABD
- : 2.rt ZCBD
3. ZABD E ZCBD
Ways-to-prove: DEF-PERP: {1} {2}
COMG=-ADJ-ANGS: {3}
%
PERPENDICULAR-CROSS
i Configuration: A
B— D
¢
Whole-statement: ATl 8D
o Part-statements: 1.rt LAXB
%ﬁ. 2.rt ZBXC
. 3.rt LCXD
o 4.rt LAXD
gg% 5. ZAXE £ ZBXC
- 6. ZBRC E ZCXD
. ‘ 7. LCED £ ZAXD
- 8. LAXD E LAXE
Ways-to-prove: DEF-PERP: {1} {2} {3} {4}
CONG-ADJ-ANGS: {5} {6} {7}
{8}
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CONGRUENT-TRIANGLES
Configuration:

Whole-statement:

Part-statements:

Ways-to-prove:

Other related rules:

585: {123}

SAS: {1 42){253}{36 1}

ASA: {146} {245}(3 56}

aAas5:{145){156) (246}
{2561 {345} (346}

CORRES-PARTS

Configuration:

Whole-statement:

Part-statementis:

Ways-to-prove:

QOther related rules:

CONGRUENT-TRIANGLES-SHARED-SIDE

W

OHETY E AXIV

Y &

Z LY E L2

&, LYRY B ZTRY
S, ZEUY Z SRur

S58: {12}
SAS: {1 4} {2 5}
ASA: {4 5)
ARS: {2 4} {3 5)

CORRES~PARTS
REFLEXIVE
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ANGLE Tutor TEXT

You'll be working with a computerized tutoring system called ANGLE for A New
Geometry Learning Environment. This text describes how to use ANGLE to solve
geometry proof problems. In ANGLE, you construct proofs in two phases. First you
work out a conceptual plan for the proof leaving out the picky details. And then in the
second phase you fill in the details to make your proof complete and rigorous.

‘Using ANGLE to Solve a Proof Problem

This section will take you step-by-step through the solution of a problem. We'll be
doing the first problem on your Tracking Sheet, PROB150.

Constructing a Conceptual Plan
You build a conceptual plan using concepts like the ones shown on the Concept
Summary Sheet you should have received. Look on the left of the ANGLE screen and
notice the list or menu of pictures. Four of these pictures are the same as the pictures
{configurations) on the Concept Surnmary Sheet. Below we'li say more about
concepts, but for now we'll get you started on PROB150,
Here's what PROB150C looks like in the usual notation:

PROB150: A

Given: T& LDE

Goal: rtZABE

When the problem appears on the screen, you'll notice it looks somewhat different.
The problem givens are on the bottom of the screen and the goal is on the top. To
construct a proof plan, you need to find one or more concepts that link the givens to the
goal. The first few problems you’ll do are relatively easy - involving only one concept.
The concept you need for PROB150 is the PERPENDICULAR-CROSS concept (the second
ane on the Concept Summary Sheet)., Notice how the configuration of the
PERPENDICULAR-CROSS concept and the diagram for PROB150 look very much the
same. This is your clue that this concept may be useful for solving the problem.

Whenever you are given a whole-statement of a concept, you can prove any of the
parl-statements of it. Look at the PERPENDICULAR-CROSS concept on your Concept
ummary Sheet and compare it to PROB150. Notice that the given €& 1 GE
Orresponds with the whole-statement of the PERPENDICULAR-CROSS concept and
ZABE is a part-statement. Thus, you can prove rtZABE directly from the given. In
her words, the plan for PROB150 is short, you simply want to prove rt£ABE using €A
BE. Here's how the plan will look when you are done:
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rt ZABE
A

€A L BE

To prove a statement in ANGLE requires two easy steps. First, you indicate that
rt ZABE is the statement you want {o prove. Next, you indicate €& L BE as the reason.
Here's how: ,

Justifying:

« Move the mouse pointer to “Justify” in the bottom menu on the lefl.
{This is the action menu.) Click the button and “Justify” should
highlight — if it doesn't, try again.

+ Now, indicate you want to prove rt ZABE by moving the mouse 1o
rtZABE and clicking the button. The statement should highlight. If it
didnt, try it again, but make sure the tip of mouse pointer is on
vt ZABE.

+ Notice that the action menu has changed: “Select Reasons” is now
highlighted instead of “Justify”.

Selecting Reasons:

«  Mouse-click on €& 1 GE. A line will be drawn from €& L OF 10 rt ZABE.

+ M you click on €A 1 BE a second time, the line will disappear. Try it.
This is what you do if you make a mistake. Now, click on it once more
to get the line back.

+  When you have the line connected, mouse-click on “DONE” in the
menu underneath the diagram.

+ {The “ABORT" option can be used if you decide you want to quit a
step you are working on.)

ANGLE should now tell you that you have “a complete proof plan” and that you should
“fill in the details™. To get rid of the message window that appears, mouse-click on the
K button. :

illing in the Details

The Rule Summary Sheet provides information you'll need in filling in the details.
foull need the rule DEF-PERP to finish up PROB150. Here is a statement of the rule:
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DEF-PERP:

C B D

Two lines are perpendicular, AB L T0,
if and only ifthey form a night-angle «1.ZABD.

. This rule can be used to make a detailed or “rigorous” connection between a
perpendicular line statement, like E& 1 OE, and a right angle statement, like vt LZABE.
The phrase if and only if in the rule indicates that it can be used in either dirgction: feft-
to-right to go from perpendicular lines to a right angle or right-fo-left to go from a right
angle to perpendicular lines. This 5 symbolized by the double arrows “<==>" on the
Rule Summary Sheet.

in PROB150, you'll use DEF-PERP in the left-to-right direction to go from the given

perpendicular lines statement to the right angle statement in the goal. You want to
insert the rule between these two statements so that your final proof will [ook like this:

vt ZABE
4

DEF-PERP

Here’s how you add this rule to your proof:

Entering a Rule:

+ Mouse-click on "Rule” in the menu 1o the lefi.

« Arule menu will appear. Mouse-click on DEF-PERP in the menu and a
rule will be created to the right.

+  Mouse-click on “Exit” at the top of the rule menu.

Moving:

+  Mouse-click on DEF-PERP and keep the mouse button down.

+ With the mouse button down “drag” BEF-PERP 1o the place where you
want it by moving the mouse. Place it on top of the line betweenTaA 1
BE and rtZABE and then let go of the mouse button.
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Inserting:

« Make sure DEF-PERP is on top of the line between €A J. BE and
rtZABE.

+  Mouse-click on “Insert” in the action menu.

« Mouse-click on Der-PERP. {t should highlight.

«  Mouse-click on “DONE".

if your proof is correct and fuily detailed, ANGLE will tell you that your proof is
"complete and rigorous”. Notice that the lines have thickened. The thinner lines
indicate planning steps, that is, steps with details left out. The thicker lines indicate
detailed steps which are finished.

Get rid of the "good job" message by mouse-clicking on the "OK" button,
Now you should start problem PROB151. Here's how you start a new problem:

Selecting a Problem:

+ Move the mouse to the top left corner of the screen to where you see
the word “Problem”. Put the mouse arrow on Problem and hold down
the mouse button. The words “Load problem” should appear just
below Problem.

« Keep the mouse button down and move to Load Probiem. It should
highlight. When it does let go of the mouse button.

« A list of problems will appear, including N1, N10, N11, .... {f you don't
see this problem list at this time, try the first two steps again.
PROB151 does not appear on the screen, because it's down a little
fower on the list. To move it into view, click the mouse buiton on top of
the downward pointing arrow. If you went 100 far, click on the upward
pointing arrow.

+  Once you see PROB151 move the mouse to it and click the button
twice in a row fast. This is called double-clicking.

It will take a little while for the problem to come up. Read on while you wait.

Concept Part-statements.
The Properties of Perpendicular Lines

if someone asks you to draw two lines, you can draw them in just about any way you
please. However, if someone asks 10 draw two perpendicular lings, you must draw
them in certain way, that is, so that they form a right angle. When we say that two lines
- are perpendicular, we are indicating a particular arrangement or configuration of lines
not just any arrangement. Basically, perpendicular lines come in three possible
configurations depending on how the two lines mest.




RIGHT-ANGLE PERPENDICULAR- PERPENDICULAR-
ADJACENT-ANGLES CROSS

As you are introduced new concepts in this text, you'll be asked to consider the
following question: What does the concept teli us about the angles and segments that
are a pan of the configuration?

For the concept of perpendiculanty we ask: What does the fact that two lines are
perpendicular tell us about the angles and segments that are formed by the two lines?
Let's iook at the PERPENDICULAR-ADJACENT-ANGLES configuration first. Say we know
that in the following picture &E is perpendicular 1o €B, in other words, A8 1 CT.

C

D

What does it tell us, if anything, about angles ZAbDc and ZBbc and about segments
AE, &0, DB, and TD? We already know that perpendicular lines form right angies. So,
we know these two facts about the configuration: 1) rt£ADC and 2) rtZBDC. Since
both angles equal 90%, it is clear they are equal to each other. Thus, we can add one
more fact to our list; 3) ZADC £ zBDC.

“What can we say about the segments in the diagram above, given that we know A8 L
. €07 Basically, nothing. Knowing that the lines are perpendicular tells us nothing

- about the sizes of the segments, nor whether the sizes are related. For example, just
iaecf;xse &8 1 ©0 we don't know, for example, that &0 = BF. After all the diagram coulid
ook like this
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and it would still be true that AF 1 ©0, however, clearly its not true that AD = B.

In summary, PERPENDICULAR-ADJACENT-ANGLES have 3 properties or part-statements
as is shown below and on your Concept Summary Sheet.

PERPENDICULAR-ADJACENT-ANGLES
Configuration:

D
A—p—©C
Whole-statement: AC L EBD
Part-statements: 1.rt ZABD
2. ¢t ZCBD

3. ZABD E LCBD

Ways-to-prove: {1} {2} {3}

Now let's do PROB151. This problem is very much like PROB150, but this time the
PERPENDICULAR-ADJACENT-ANGLES concept is involved and you'll be proving a different
part-statement. Since the goal £ABD = LEBA is a part-statement of A8 L EB, you can
prove it directly as in PROB150. If you don't remember how to do this, refer back to the
descriptions of Justifying and Selecting Reasons above. ‘

After you have a plan, you need to.fill in the details. A different rule is involved this
time. it's called Congruent Adjacent Angies, which we abbreviate CONG=ADJ~ANGS.

A

CONG-ADJ-ANGS: c——p

Angles formed by connecting lines are congruent, ZABC £ ZABD,
if and only ifthe lines are perpendicular, A8 L TO.

This rule can be used to make a detailed or “rigorous” connection between a
erpendicular line statement, like AE L ED, and an angle congruence statement, like
ZABD & £eBA. Notice that this rule is also an “if and only if* rule. You can use it in the
eft-to-right direction to get from congruent adjacent angles to perpendicular lines or
OU can use It in the right-fo-left direction to get from perpendicular lines to prove the
djacent angles are congruent. In PROB151, you are using it in the right-to-left




You should now insert CoNG=ADJ-ANGS into your proof. If you don’t remember how,
refer to the Entering a Rule, Moving, and Inserting directions above.

[ 11 you haven't already, finish problermn PROB151.
When you are done, choose problem PROB152 and read on before doing it. if you

don't remember how to choose a problem, reread the directions for Selecting a
Problem. * '

Concept Ways-to-Prove

The previous section discussed the three properties or part-statements of the
PERPENDICULAR-ADJACENT-ANGLES concepi. In this section, we address the question:
How many of these part-statements or properties do you need to know to prove two
lines are perpendicular?

Look at the foliowing diagram.

D
A C
B
- ~ Right now £cBD is smailer than £ZaBD. But consider what happens if line BD is moved:
D
A C
B

Try to answer these questions befare going on:
1. What happens 1o the sizes of the two angles?

2. ifline BD is moved so that £aBD and £CBD are the same size, what will
line BD look like? Will it be tilted to the right, tiited to the left, or straight up
and down (vertical)? Wil it be perpendicular to AE?

2 7
\'§'/

vy
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3. Ifline BD is moved so that £CBD becomes a right angle (= 90%), what will
line 80 look like? Will it be tilted to the right, tilted to the left, or straight up
and dawra {vertical)? Will it be perpendicular to AT?

4. What properties of the diagram above do you need to be told in order to
know that A€ L B07 Do you need to be told all three properties: rtLCBD,
vi ZABD, and ZCBD & 4&35‘? Or is it enough to be told just two of these?
Or is it enough to be told only one?

To answer question 1, you should notice that as BB moves, ZcBD gets larger and

- ZABD gets smaller, At some point Zcep, which started out smaller, will become equal
to £LABD, which started out larger. At the point where they become equal, BD will be
vertical — if BD were tilted to the right Zceo would be smaller than £ABD, if BD were
tiited 1o the left ZcBD would be larger than ZABD. In other words, as a result of making
ZeBD € £ABD, lines BO and AT become perpendicuiar. This is the answer to question
2 and a clue for question 4.

Question 3 should be easy. If we make ZceD a right angle, BD will be vertical and so,
we'll know that AC L 80. This answer should also help you with question 4. [If you are
gavan all three preper&es ¥t ZCBD, rt LABD, and ZCBD £ ZABD, clearly you could prove
ac 1 BO. But, simply being told one of these is enough to prove that At L B0. In
question 3, we saw that being told rt.ZcBD is also enough. For the same reason,

being told rt ZABD is enough tco. Lastly, from question 2, we know that ZceD € ZABD
is also enough.

~Summary

To summatize, you can use any one of the three part-statements of PERPENDICULAR-

. ADJACENT-ANGLES in order to prove the whole-statement. This fact is indicated in the

_ ways-to-prove of the concept (see your Concept Summary Sheet). The {1} in the
‘ways-to-prove of PERPENDICULAR-ADJACENT-ANGLES indicates that you can prove AT i
BO if you know rt £ZABD. A {1 2} in the ways-to-prove of PERPENDICULAR-ADJACENT-

. ANGLES would indicate that you need both right angles, rt £a8D and rt LCBD, 10 prove
AT L BD. But, as we saw above, you just need to know one of them.

Back to Doing Problems

Look at the goal of PROB152, Bt 1 EA, and notice that it is a whole-statement of
PERPENDICULAR-ADJACENT-ANGLES. Whenever you want 10 prove the whole-statement
of a concept, you should look at the concepts ways-to-prove. Since the given
statement rt ZCBD is way-to- -prove of OC d EA, you can justify it directly from this gwen
Do 1has as described above in Justifying and Selecting Reasons,

f;?i in the details, you need to find a rule which gets you from a right angle to
rpendicular lines. Look on your Rule Summary Sheet. What rule will work? cone-
J-ANes doesn't work because it connects perpendicular lines and an angle
fgruence statement, however, DEF-PERP does work. Recall that DEF-PERP can be
&d in either direction: you can prove right angles from perpendicular lines or, as in
§ problem, perpendicular lines from right angles.



Insert DEF-PERP into your proof. If you forgot how, see the sections above on Entering
a Rule, Moving, and Inserting.

[ ] Finish PROB152.
Choose problem N1 and read on.

Again, problem N1 has a short plan — you can get the goal directly from the given.
This time the problem diagram contains a PERPENDICULAR-CROSS configuration and a
different one of the ways-to-prove is involved. Notice that the pan-statements and the
ways-to-prove of the PERPENDICULAR-CROSS concept are essentially the same as the
part-statements and ways-to-prove of the PERPENDICULAR-ADJACENT-ANGLES concept.

[1 Do Nt now.
Choose problem P1.

This is your first two step problem. When the problem comes up, try proving the goal
directly from the given. ANGLE will tell you that you can only prove rtZMKL with a
concept (or the whole-statement of a concept). The given ZJkM E ZMKL is not a
concept but a part-statement. However, both of these statements are part-statements

of the PERPENDICULAR-ADJACENT-ANGLES concept LJ L FE. So, the given can be used
to prove €7 L MK and then, ©J 1 FMK can be used to prove the goal. The final proof
plan will look semething like this:

rtZMEL

iy
el
-
3
=

LJEM E ZMKL

- You need to Jearn how to make the concept LJ L AE. When the problem is ready, do
the following.

Making a Concept:

*  Mouse-click on the PERPENDICULAR-ADJACENT-ANGLES configuration
in the menu on the left — it's the 5th item down from the top.

* Now click on the segments in the diagram that make up this
cenfiguration. Click anywhere near the middle of a segment to select.
The segments will highlight as you pick them.
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* Highlight all the segments that make up the PERPENDICULAR-
ADJACENT-ANGLES configuration, in this case every segment in the
diagram but im.

» If you make a mistake, you can click on a segment a second time.
This will erase the highlighting of that segment.

+  When you've highlighted only the segments, LK, KJ, and KH, click on
"DONE" in the menu below the diagram. A concept will be created,
complete with the whole-statement and a miniature configuration. If
you get an error message, try again.

To finish the proof plan, you need to move the concept into the middie of the screen.
Moving works just like it does with rules — see the directions above for Moving if you
need to. Next, Justify LT L MK just like you did for the goal statement in the problems
above. Similarly, you need to justify the goal rt Mkt and select LJ L MK as the
reason.

~ Tofill in the details, you need to add rules on both steps. In other words, you need a
rule to go from £JukmM £ ZMKL to I L FK and a rule to go from 03 1 MK to rt ZMKL.

[] Finish P1..
Choose problem N2,

In the problems so far, there's only been one given statement and only one concept
configuration in the diagram. in problem N2, there are two given statements and two
examples of the PERPENDICULAR-ADJACENT-ANGLES configuration in the diagram. You
need to figure out which of these two is relevant to proving the problem goal.

[1 Do N2 now.
Choose problem N3.




Triangle Congruence

The remaining concepts and rules you will [earn with ANGLE are related to triangle
congruence. Jusi as segments and angles can be congruent, so can triangles.
Triangles are congruent if they have the same size and shape. The following two
triangles are congruent.

Q T

P R s u

1f two triangles are congruent, it is possibig to place one on top of the other so that the
first exactly covers the second. For.aprar to be congruent to A ST, the following
points need to be in correspondences:

| S a~T R™U

We indicate this triangle congruence in geometry with the statement aPor & ASTU.
Alternatively we can say AQRP & ATUS Or &0FR £ ATSU or any of the other 6
possibilities where the points that correspond are in the same position. Note that
APRQ E ASTU S not a correct way to specify the congruence between these triangles
because this indicates that PR & ST which is clearly not true (look at the diagram
above).

What Are the Properties of Congruent Triangles?

What does the fact that two triangles are congruent tell you about the segments and
angles formed by the triangles? Consider the triangles below:

B Y

A C Z

e TP —

What can you say about the segments, AR, BC, TA, &Y, ¥Z, and Z¥, in these triangles?
Given that you are toid AaBC £ AXYZ, can you tell whether any of these segments are
equal to each other? Compare the size of &8 with the size of each of the other five
segments. You should notice that X¥ is the same size. Perhaps this is not a surprise
to you, since if you slide &axvz on top of aaBc, A8 and ¥ fit exactly on top of each
~other. So do BE and ¥Z as well as €4 and Z%. In other words, the segments of

CONGRUENT-TRIANGLES have these three properties or part-statements: 1) AB & X¥, 2)
BCEYZ, and 3)CA & Z¥.
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What about the angles? The three corresponding angles of each triangle are also the
same size. Thus: 4) ZB& LY, B} LC S £z, and 6) LA 5 £R are also part-statements of
the CONGRUENT-TRIANGLES ¢oncept.

Here's the CONGRUENT-TRIANGLES concept showing the six part-statements. We'll
discuss the ways-to-prove below.

CONGRUENT-TRIANGLE S
Configuration:
A X
B c Z ¥
Whole-statement: HABC E AXYZ
Part-statements: 1.ABERY
2,.0C2Y7
Z.CASZX
4. B8 /Y
B, LCE 22
6. LBE 2%
Ways-to-prove: 585: {123}
SA5: {14 23253} {36 1}
ASA: {146} {245)}{3 56}
AAS:{1453{156} {246}
{(256}{345}{346)
QOther related rules: CORRES-PARTS

Look at problem N3. Since the goal AB £ EF is a part-statement of the given AABC &
AEFB, your plan simply involves proving the goal using the given.

To fill in the details you'll need to use the Corresponding Parts rule, abbreviated as
CORRES-PARTS. This rule is also called CPCTP for "Corresponding Parts of
Congruent Triangles are Congruent".



CORRES-PARTS

' A C Z
If two triangles are congruent, AABC & AXYZ,
then all the corresponding sides are congruent: AB & ¥¥, BT £ ¥2,
and ER £ 2%, and all the corresponding angles are congruent: ZABC
E ZXVZ, LBCA E 2YZX, and ZCAB & Z2XY.

This rule is not an if and only if rule — it can only be used in the left-to-right direction to
prove segments or angles congruent from congruent triangles. Here's how your final
proof for N3 should look:

B

g

EF

- m

CORRES-PARTS
'

OHABC E AEFG

AB £ EF is proven from A&BC £ AEFG USING CORRES-PARTS as the rule. CORRES~
PARTS cannot De used in the right-to-left direction to prove triangles congruent from
congruent segments and angles. The rules below are for that purpose.

[1 Finish N3 by inserting the CORRES-PARTS rlle.
Choose problem PROB310 and read on.

‘Ways to Prove Triangles Congruent

“Look on your Rule Summary Sheet and you'll notice that the next 4 rules can all be
used to prove triangles congruent. These four rules indicate the different combinations
f CONGRUENT-TRIANGLES part-statements which are enough to prove the triangles
ongruent, Basically, you need to know at least three part-statements to prove

nangles congruent, But, not just any three will do. What three work?

Combinations of that work:
3 sides (S88),
2 sides and 1 angle if the angle is included (SAS), or
1 side and 2 angles (ASA or AAS).
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Combinations that don't work:
<3 part-statements,
2 sides and 1 angle that is not included,
3 angles.

The combinations that work are summarized in the ways-to-prove of the CONGRUENT-
TRIANGLES concept above and on your Concept Summary Shest. Notice that there is
only 1 combination of three sides, 3 combinations of two sides and an included angle,
3 combinations of two angles and an included side, and 6 combinations of two angles
and a non-included side,

You can do PROB310 with a one step plan since the givens are the 3 segment part-
statements of the goal AGFE £ .aDcA. In other words, Justify the goal statement and
select all three givens as reasons. Don't forget to click on "DONE",
Filling in the Details of Triangle Congruence Plans

There are four rules for proving triangles congruent. The first is the side-side-side
postulate, which we will abbreviate sss:

SSS

A c Zz
Ifthree sides of one triangle, AB, BT, and AT, are congruent to the
corresponding sides of another triangle, ¥, ¥Z, and %z, that is, AB &
XV.BC2VZ, and AT & X2,
then the triangles are congruent: AABC & AXYZ,

Here is how $s5 is used as part of a proof:

AABC = AXEYLE

4

C 4

1H
=}
N

XY BC

L H
m

0 finish up PROB310, you need to insert the 555 rule into your plan. Place 8% on
Y one of the three lines going up 10 AGFE £ ADCA. REFPEAT: You only need to put it



on one of the three lines. Then choose /nsert as usual and click on sss. Don't forget
to click on DONE.

[1 Finish PROB310 if you haven't..
Choose problem N4 and read on.

As part of your solution plan for problem N4, you need to construct a TRIANGLE-
CONGRUENCE concept for the triangles that appear in the diagram. Mouse-click on the
TRIANGLE-CONGRUENCE configuration in the menu of the left (the 9th item down from the
top) and then, mouse-click on the segments in the diagram that make up these
triangles. See the directions for Making a Concept above if you need help.

When you're ready to fill in the details you'll need a new rule for proving triangle

congruence. Instead of using just sides, this rule uses a combination of angles and
sides:

SAS:

A C Z
if two sides and the included angle of one triangle, AB, BT, and
ZABC, are congruent to the corresponding parts, #Y, ¥E, and 2%z,
of another triangle, that is, A8 £ XY, BC & ¥Z, and ZABC & £LXYZ,
then the triangles are congruent; AABC € ARYZ.

Note that the side-angle-side postulate requires that the angles be contained between
the two congruent segments. The figure below shows why this is critical.

Q [N
N
! T
A
i 1]
P M R S i U

Even though there are two sets of corresponding sides, P # 5T and PR € 50, and a set
of corresponding angles, £PRQ £ £ SUT, clearly these triangles are not congruent.
(Note: the dashed lines indicate how aPRa would look on top of asuT.) In order for
AS to apply, make sure the angle is at the point where the two congruent segments
leetl. If ZRPG £ £ UST had been given in the picture above, then you could prove the
tnangles congruent by sAs. ‘

11 Do problem Na.
hoose problem N5 and read on.
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Only under the circumstances indicated above is it possible to prove triangles
congruent when you have two sides and an angle as congruent corresponding pans.
However, no special circumstances are necessary when you have Iwo angles and a

side as congruent corresponding pans. The two rules Asa and AAS are used in these
situations.

. . B A
ASA: : A A
A c z

Iftwo angles and the included side of one triangle, £ZABC, £BCA,
and BT, are congruent 1o the corresponding parts, £Xvz, £LvZx, and
¥Z, of another triangle, that is, ZABC £ ZXYZ, LBCA £ £vZ¥, and BC
EVZ,

then the triangles are congruent: AABC £ AXYZ.

= Y
AAS; A A
A C Z

Iftwo angles and a non-included side of one triangle, ZABC, ZBCA,
and AB, are congruent to the corresponding sides of another
tiangle, £xYZ, £YZX, and Y, that (5, ZABC £ £XY2, LBCA & £YIX,
and AB £ XY,

then the triangles are congruent: AABC £ AXYZ.

You now have four rules, 558, SAS, ASA, and AAs, that you can use to prove triangles
congruent, ,

[ 1 Finish problem N5.
Choose problem P5 and read on.

Overlapping Concepts

!n the next few problems we'll be exploring cases where two concepts overlap. Look
in the diagram for problem P5 below.
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P5: J
Given: AJKNE AJPN

ZKLN E ZioP

LZLNK & ZPNO

Goal: ALKNE &0PN . __ K p

Try to figure how concepts AJKN £ AJPN and ALKN £ &0PN overlap. In other words,
what pan-statement of & JKN £ AJPN is als0 a part-statement of ALKN £ A0PN. On
the back of your Tracking Sheet, write down the 8 part-statemenis of A JKN £ AJPN.
After you've done that write down the 6 pan-statements of &LKN £ .a0pPN. Circle the

- statement that appears in both lists. Ask Ken to check this when you're done.

Finding such overlapping part-statements is usually a big clue to doing a proof. In P8,
FN & PN provides you a way to get from AJKN £ AJPN 10 ALKN & AOPN. You can
prove KN £ PN using AJKN & AJPN and then, use KN £ PN along with the other part-
statements you're given 16 prove ALKN = AOPN.

In order tc prove EN £ PN, you'll first need to create this statement. Here's how.

Making a Segment Congruence Statement:

+ Mouse-click on the item at the betlom of the menu on the left, just
above the action menu. It contains three segments with one, two, and
three markings on them,

+  Mouse-click on KN in the problem diagram. “EN &” should appear in
the box below the diagram. Now, mouse-click on FN and KN £ PN
should now appear in the box.

+  Mouse-click on “DONE”,

+  NOTE: If you want to create a segment that is made up of two smaller
segments, click on one segment, keep the mouse down, and drag
over the other segment,

You can move this statement into the proof and justify it just like a concept. In this
ase, you want {0 Jusitify KN £ PN and then pick AJKN £ A JPN as the reason.

| Finish problem PS5.
hoose problem P& and read on.
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P& B

Given: AJEN & AJPN
ZELN & ZLOP
ZLNK E ZPNO

Goal: OABC = AEFG

The proof for problem P8 involves 3 overlapping CONGRUENT-TRIANGLES concepts.
Write down the part-statements for each of the three triangle congruences. Figure out
how the two given triangles overlap with the goal triangles. You should find 2 overlaps
between & ABD € AEFH and AABC £ AEFG, and 2 overlaps between ABCD & AFGH.
and &aABC £ ALF6. Have Ken check these.

In order to do problem P6, you'll need to create the angle congruence statements you
find in the overlap between the triangles. Here’s how.

Making an Angle Congruence Statement: :

« Inthe menu on the left, mouse-click on the item just above the item for
congruent segments. It contains three angles with one, two, and three
markings on them.

+ Toindicate an angle, you need to mouse-glick near the vertex right
about where you would draw a mark with a pencil to indicate angle
congruence. When you've selected an angle, it should appear in the
box below the diagram.

+  When you've selected two angles, mouse-click on “DONE”.

+ NOTE: If you want o create an angle that is made up of two smaller
angles, click on one angle, keep the mouse down, and drag over the
other angle.

. Work on problem P6. Make the overlapping statements you found and prove them

- using the given triangles. Then, figure out how you can use these statements to prove
the goal triangle. Warning: Remember there is no SSA rule — if you have two sides

- and an angle, the angle must be the included angle.

| Finish problem Pé.
Choose problem P7 and read on.

Sometimes you need to search for the key concept or concepts that are needed to
Orm a proof plan. in problem P7, think about what triangles you could prove
congruent in order to prove the goal ZJLE € £osN. When you've found those



triangles, create the concept for them —~ use the menu on the left and mouse-click on
the segments which make up the two triangles.

Now, think about how the triangle-congruence you want to prove overlaps with the
triangle-congruence you are given, AKHJ & ARPQ.

If you're having trouble with figuring out how to do the proof, you can ask ANGLE for a

hint:
Requesting Hints from ANGLE:
* Go up to the “Info” menu, mouse-click on “Info™ and hold the mouse
button down. Slide down to “Hint” and let go of the mouse bution,
* Read the message that should appear in the upper right corner of the
screen,
= [f you want a stronger hint, try "Hint" again. You can keep getting
more and more specific hints and if you are really stuck the tutor will
eventually tell you what to do.
[ Finish problem P7.

Choose problem P8 and read on.

On harder problems, like PB, it is often useful to 1ry to prove triangles congruent even if
you don’'t know how they will help you prove the goal. So, in this problem diagram,
find any two triangles which look congruent and make the corresponding concept. Try
to prove it. If you can’t, try to prove some other triangles congruent. Then when you've
done that, go back to the first triangles if you need to, and try to prove them congruent
using what you've learned.

Remember, it helps to figure out how the corresponding segments and angles of
proven congruent triangles overiap with the corresponding parts of triangles you are
trying to prove congruent.

Ask for a hint, if you're having trouble. See “Requesting Hints from ANGLE" above.

[ 1 Finish problem P8.
Choose problem PROB311 and read on.

Congruent Triangles That Share a Side

Planning with the CONGRUENT-TRIANGLES-SHARED-SIDE Concept
In the following diagram it is given that AB & BC and A & £0.




B

. Are the two triangles, aasp and acep, congruent? Even though you're only told two
statements about them and usually you need at least three? Yes, the triangles are
congruent — you could fold one exactly on top of the other. How is it that these
triangtes are definitely congruent even though you're only given two statements about
them?. The answer is that since 80 is a side of both triangles, so the triangles actually
have three corresponding sides which are congruent.

in ANGLE there is a special concept for congruent triangles that share a side:

CONGRUENT-TRIANGLES-SHARED-SIDE

Configuration:
X
Y z
W
Whole-statement: AXTW E AXZV

Part-statements: 1. E
2. YWEZY
B.LYE 22
4, LYRWE L20Y
G. LAWY E LRy

B
i1

i |

Ways-to-prove: 558: {12}
SAS: {14} {2 5}
ASA: {4 5)
AAS: {3 4} {2 5}

Other related rules: CORRES-PARTS
REFLEXIVE

When two triangles share a side, you only need two segment or angle congruence
Statements to prove them congruent — as long as they are the right two. These are
Indicated in the ways-fo-prove of the CONGRUENT-TRIANGLES-SHARED-SIDE concept.
Notice that the first way-to-prove, {1 2}, correspands with the situation above where the
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two segment part-statements are used 1o prove the triangles congruent. This is also
the situation in PROB311.

Working out a plan for problem PROB311 is quite simple. You can prove the goal
auxy £ azxy directly from the givens because the goal is a CONGRUENT-TRIANGLES-
SHARED-SIDE concept and the givens correspond with the first of the ways-to-prove of
this concept. In other words, Justify &uWXY £ AZRY and pick WY £ ¥Z and WK & %2 as
reasons.

Filling in the Detalls Using the REFLEXIVE Rule

At the detail level, you need to prove these triangles congruent by $55. However, you
only have two congruent side statements on the screen. You need to construct the
reflexive statement ¥ = XY and prove it by the REFLEXIVE rule. Here’s the rule:

REFLEXIVE: A
if segment 8B appears in the diagram,
then ABE &B.
C D
B

Here's how you use it in problem PROB311. First you need to make the reflexive
statement - this is just like "Making a Segment Congruence Statement” above:

Making a Reflexive Statement:

»  Mouse-click on the segment congruence menu item (at the bottom on
the left, just above the action menu).

+ Mouse-click on the segment in the diagram. * ¥ £ " should appear in
the box below the diagram. Mouse-click on the segment a second
time. X¥ & X¥ should now appear in the box.

+ Mouse-click on “DONE" and then move the statement into the middle
of the screen.

- Now you need to prove this statement.

Proving a Reflexive Statement:

»  Select REFLEXIVE from the rule menu and move it so that it is below ¥¥
£ 7Y

+  Now Justify ®¥ £ R¥ by choosing Justify from the action menu and
mouse-clicking on X¥ = X¥.

» Pick the REFLEXIVE rule as the reason by mouse-clicking on it.

+ Mouse-click on “DONE".

You don't need any premises going into the REFLEXIVE rule as long as the segment
appears in the diagram. Everything else in your proofs must be built up from the
givens. In other words, for your proof to be complete, everything but the givens and
the REFLEXIVE rule should have thick lines going into it.

ffha last thing you need to do to finish PROB311, is add the sss rule.
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Adding a Rule 1o Prove a8 CONGRUENT-TRIANGLES-SHARED-SIDE

concept:

« (etsss from the rule menu and move it up top of one of the two lines
going to & WXy £ AZ¥y. Make sure it is higher on the screen the
reflexive statement ¥V & X¥.

« Now, insert the rule by choosing Inserf and mouse-clicking on gss.
But, before you choose "DONE" mouse-click on ¥ £ ¥¥ to add it as
the third premise for sss.

*  Mouse-click on “DONE".

[1 Finish problem PROB311.
Choose problermn PROB352 and read on.

In this problem, you’ll have to construct a CONGRUENT-TRIANGLES-SHARED-SIDE concept.
Pick the CONGRUENT-TRIANGLES-SHARED-SIDE configuration in the menu on the left - it's
the picture just below the CONGRUENT-TRIANGLES configuration. Now indicate the
segments in the diagram that make up AuWxe & AYzX,

Finish the proof plan by using this concept as the intermediate step between the
givens and the goals. Then fill in the details. Remember to add the reflexive

staternent, justity it, and then select it as an extra premise when inserting the rule for
AWRZ E AYZN.

{1 Finish problem P35Z2.
Choose problem PROB3353 and read on.

As shown below CONGRUENT-TRIANGLES-SHARED-SIDE configurations can come in
many forms beside the one shown above.
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CONGRUENT-TRIANGLES-SHARED-SIDE configurations:

A
1. 4. Y
A
X
. B y
8. A ¥
TN

The triangles can be on opposite sides of the shared side as in configurations 1-4 and
7-9 or on the same side of the shared side as in 5 and 6. The points on shared side

can correspond with themselves as in configurations 1, 2, and 9 where AXAB £ AYAB
or can they can correspond with each other as in the other cenféguratéms where AXBA

£ AYAB. The triangles involved may have acute angles enly (1, 3, 5, and 7}, an
oblique angle (2, 4, 6, and 8), or a right angle (3).

The diagram for PROB311 is like configuration 2, while the diagrams for PROB352 and
PROB353 are like 7. The problems below will have other types of configurations.
Watch out for configurations 5 and 6 which are particularly hard to see.

[ 1 Finish problem P353,
Choose problem N7 and read on.

As we discussed above, a good strategy for doing difficult problems is looking for

- overlapping part-statements between triangle concepts you've proven and ones you
want to prove. This is also true of other concepts. Overlaps can also occur betwsen a
ONGRUENT-TRIANGLE-SHARED-SIDE concept and one of the perpendicular concepts.
his happens in problem N7 where the diagram looks like configuration 9 above.
igure out how the PERPENDICULAR-ADJAGENT-ANGLES concept and the CONGRUENT-
'RIANGLE-SHARED-SIDE concept overlap in this problem. What part-statementis a
roperty of both concepts?

| Finish problem N7.



Choose problem P2 and read on,

For this problem, repeat the exercise of identifying the part-statements which appear
both in the given triangie congruence statement and the goal triangle congruence
statement. Have Ken check what you come up with. You should find two statements
that are part-statements of both thangle congruences.

[ 1 Finish problem P2.
Choose problem P3 and read on.

Do overlap exercise, just as with P8

[ | Finish problem P3.
Choose problem N16 and read on.

One of the more difficult forms of the CONGRUENT-TRIANGLES-SHARED-SIDE configuration
is the case where the two triangles are on the same side of the shared segment ~
configurations 5 and 6 above. This is the case in problem N18. What is particularly
hard about this configuration is seeing the corresponding angles. Write down the
three corresponding angle statements for triangles AABC and ADCB in problem N186.
Have Ken check these.

[} Finish problem N18.
Choose problem N17 and read on.

Remember:
1. Looek in the diagram for triangles which look congruent — try to prove
that they are.
2. Identify overiaps between triangles you want to prove congruent and
ones you've already proven.

[| Finish problem N17.
Choose problem N15 and read on.

Review the PERPENDICULAR-ADJACENT-ANGLES concept.

How many part-statements do you need to prove the CONGRUENT-TRIANGLES-SHARED-
SIDE concept?

What triangles could you prove congruent in order to prove the goal £ZBFA £ 6B of
problem N157

1 Finish problem N15.
Choose problem N8 and read on.

The triangles you need in this problem are a little difficult to see. Counting all the
Hangles in the diagram may help you to notice some triangles that you didn't at first. If

gté are having trouble, ask ANGLE for help. See “Requesting Hints from ANGLE"
ve,



[} Finish problem NG.
Choose preblem N8 and read on.

Remember:

‘ 1. Look in the diagram for examples of perpendicularity or triangle
L congruence concepts.

2. ldentify overlaps between concepts you've proven and ones you want
i 1o prove.

[ ] Finish problem N8 and keep these things in mind as you do the remaining problems
i onyourtracking sheet. If you finish ali the problems, talk to Ken.
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GEOMETRY PROOF TUTOR TEXT

You'll be working with a computerized tutoring system called the
Geometry Proof Tutor or GPT, for short. This text describes how to
use GPT to solve geometry proof problems,

In the first problem, you'll be using the rule DEF-PERP. Here is a
statement of the rule:

DEF-PERP: o) D

B

Two lines are perpendicular, &8 1 €F,
if and only if they form a right angle vt ZABD.

This rule and the others you'll be using appear on the Rule Summary
Sheet you should have been given. You can refer to this sheet when
doing problems. Let's start our first problem on GPT.

Using GPT to Solve a Proof Problem

This section will take you step-by-step through the solution of a
problem. We'll be doing the first problem on your Tracking Sheet,
PROB150.

Selecting a8 Problem:

+ Look on the computer screen and you should see 2
problem menu, that is, a list of problems from which
you can choose. Locate PRORIS0 in the menu,

+ Move the mouse so that the arrow on the screen is
pointing to PROB150 in the menu.

» Hold down the the left mouse button and do not let go.
PROB150 should highlight in the diagram.

+ If PROBI150 is not highlighted, keep the left button
down and move the mouse until it is. Then let go of
the button to select PROB150.

It will take a little while for the problem to come up. Read on, while
you wait. Here's what PROB150 looks like in the usual notation:
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PROB150: A

Given: A LDE

Goal: l rtLABE

When GPT is ready you'll notice the problem appears on the
computer screen in a different form. The givens are on the bottom
and the goal is on the top Your job is to link the givens to the goal,
using geometry rules and statements. When you are done, your
proof will look something like this:

riZABE
A

DEF-PERFP

tA lbE

At the bottom of the screer you should notice the question "What
statements are you working from?". The tutor wants to know what
given or proven statements you are going to use as the premise for a
geometry rule.

Selecting Premises:

+ Move the mouse pointer to the given statement, TA L
BE, and press and release the left button. A box should
appear around the statement. If a box didn't appear,
try it ggain, but hold the mouse button down a little
longer this time.

¢+ Now, move the mouse up a little bit and press and
hold down the right button. A menu should appear.
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Slide the mouse up so that the "Done selecting” option
is highlighted and then, let go of the button,

You may have wait a second or two, but than the question: "What is
the rule?” should appear at the bottom of the screen. The tutor
wants you to type in the mlc that foliows from the premise(s) you've
selected.

Typing the Rule:
Use the keyboard to type in the rule, DEF-PERP.

= When you are done typing, press the ENTER key. Its
on the right side of the keyboard and has two amrows
on it pointing down and to the left. The rule should
appear on the screen with a line from the premise, EA
4. DE, to it

Finally, GPT wants the conclusion that follows from applying the rule
you typed to the premise you selected. The question "What is the
conclusion?" should appear at the bottom of the screen. There are
actually four possible conclusions of applying DEF-PERP to €& 1 DE :
rtZLABD, rt LDBC, rt LCBE, and rt LEBA. But since rt LEBA is the goal, you
should enter it.

Entering the Conclusion:

* Move the mouse up to the menu in the top-left corner
of the screen and find the item for right angles: rt.L.

* Click the left button on top of rtZ£. You should see this
symbol appear at the bottom of the screen. If you
don't, try it again, but hold the mouse down a little
longer this time.

*» Move to the problem diagram to indicate the points E,
B,and &:

» Click the left button on point E in the problem
diagram. You should now see rtZE on the screen.

-« Left-click on point B in the diagram.

s Left-click on point A.

* You should see rtZEBA on the screen. If you make a
mistake you can use the RUBOUT or CLEAR INPUT
options at the bottom of the menu. Press the ENTER
key when you are done.
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After you press‘ ENTER, GPT should respond by drawing a line from
DEF-PERP to rt LZEBA and then printing "SUCCESS" to indicate that you
have completed the proof.

Now you should load PROB152 (if you forgot how, see the note above
on Selecting' a Problem). Since it takes a while for GPT to prepare
a problem, you should read on while you wait.

While PROB150 illustrated the use of the peEF-PERP rule in the left-to-
right direction, that is, from perpendiculars to a right angle, PROB152
illustrates the use DEF-PERP in the right-ro-left direction, that is, from
a right angle to perpendiculars.

"If and Only If" Rules

The phrase "if and only if" in the Definition of Perpendicular Lines

indicates that this rule works in both directions. If you are given or
have proven a perpendicular statement on the screen, then you can
use DEF-~PERP (in the Jeft-to-right direction) to prove that any one of
the angles formed is & right angle. This is what you did in PROB150.

Going in the other direction, if you have a2 right angle statement on
the screen, you can usc DEF~PERP (in the right-to-left direction) to
prove that the lines making up this angle are perpendicular. You will
use DEF-PERP in this way in PROBI152.

Look at DEF-PERP on your rule summary sheet. The double arrows
"<=>" indicate that this rule works in both directions. This is not the
case for all rules, for example, look at the rule CORRES~PARTS on the
sheet. This rule can only be used in the left-to-right direction. This
is indicated by a single headed arrow "==>",

If forgot how to Select Premises, Type the Rule, or Enter the
Conclusion, use the directions above. In doing this problem, you
can use a short-cut for entering the conclusion. Whenever the
conclusion is the problem goal, you can simply point to it and
indicate "DONE SELECTING".

Enter the Conclusion Short-Cut:

+ Make sure you've selected premises and typed a rule.
If you've done so GPT should be asking youn, "What is
the conclusion?". ,

+ Left-click the mouse on the goal statement, BC 1 EA.
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+ Hold done the right button, choose "DONE SELECTING",
and then let go of the button.

[ 11If you haven't already, do problem PROBI5Z now.
When you are done, chose the next problem, NI

The next rule you'lll use in problems is called Congruent Adgaceﬂt
Angle:s which we abbreviale CONG-ADJ-ANES.

e

A

CONG-ADJ-ANGS; o4 —0

Angles formed by connecting lines are congruent, ZABC E
LABD,
if and only if the lines are perpendicular, &8 1 0.

Notice that this rule is also an "if and only if" rule. You can use it in
the left-to-right direction to get from congruent adjacent angles to
perpendicular lines or you can use it in the right-to-left direction to
get from perpendicular lines to prove the adjacent angles are
congruent.

Use CONG-ADJ-ANGS in the left-to-right direction in problem N1.

| [1Do NI now.
Choose problem PROBI15! next and read on.

The picture below illustrates the use of CONG-ADJ-ANGS in the right-
to-left direction:

GPT Text




ZABD £ LEBA

¢

€0HG-A%§*&EG$

AB L ED

{1Do PROBISI now.
Choose problem PI.

This is your first two step problem. After selecting a premise and
typing a rule, this time you won't be able to use the short-cut for
entering the conclusion, since the conclusion of the first step, IJ 1 FK,
is not the goal. You'll need to enter this statement as described

above in Enter the Conclusion.

f1Do Pi now.
Choose problem N2.

In the problems so far, there's only been one given statement and

you always start by selecting it. In the mext problem, N2, there are
two given statements and you need to figure out whether to select

both or just one of them. (Hint: Both the rules you've leamed so far
can only have one premise.)

[1Do N2 now.
Choose problem N3.

Triangle Congruence

All the remaining rules you will learn with GPT are related to
triangle congruence. Just as segments and angles can be congruent,
so can triangles. Triangles are congruent if they have the same size
and shape. The following two triangles are congruent:
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If two triangles are congruent, it is possible to place one on top of the
other so that the first exactly covers the second. For & PQR to be
congruent 10 & 3TuU; the following points need to be in
correspondences:

F™8 L Rl | R™U

We indicate this triangle congruence in geometry with the statement
&POR € aSTU. Alternatively we can say AORF E &TUS or AOPR £ ATSU
or any of the other 6 possibilities where the points that correspond
are in the same position. Note that &4PRQ E &STU is not a correct way
to specify the congruence between these triangles because this
indicates that PR € 5T which is clearly not true (look at the diagram
above).

Proving Parts of Triangles Congruent

By definition we know that if 2 figures are congruent their
corresponding parts are congruent. Consider the two triangles below.

E

A C D F

If aaBc £ o0EF then we can conclude any of the following:

AE & bF LAE LD
BCEZEF LB E LE
CAZFD LL B LF

To do so you need to use the Corresponding Parts rule, abbreviated
as cORRES-PARTS. This rule is also calied CPCTP for "Corresponding
Parts of Congruent Triangles are Congruent”.

-
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If two triangles are congruent, AABC E &XYZ,

then all the corresponding sides are congruent: AE & XY, BC £
¥Z, and €A & IX, and all the corresponding angles are
congruent: ZABC # £XYZ, ZBCA & Z¥ZX, and ZCAB & LZXY.

This rule is not an if and only If ule -« it can only be used in the left-
to-right direction to prove segments or angles congruent from
congruent triangles. Here's an exemple showing how ZBAcC £ ZLEDF can
be proven using CORRES-PARTS as the rule and AABC & ADEF as the
premise:

LBAC E LEDF

CORRES-FARTS

LABC E ADEF

CORRES=PARTScannor be used in the right-to-left direction to prove
triangles congruent from congruent segments and angles. The rules
below are for that purpose.

[1Do problem N3.
Choose problem PROB310 and read on.

Proving Triangles Congruent

Look on your rule summary sheet and you'll notice that the next 4
rules can all be used to prove triangles congruent. The fisrt is the
side-side-side postulate, which we will abbreviate sss:
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A C Zz
If three sides of one triangle, AB, BC, and AT, are congruent
to the corresponding sides of another triangle, KV, ¥Z, and
KZ, that is, AB & XV, BT 8 VZ, and AT & X2,
then the triangles are congruent: AABC ¥ AXYZ.

Here is how $s$5 is used as part of a proof:

AABC € OXYZ
A

ABEXY BCE&VZ

2
"
Al

[1Do¢ problem PROB310.
Choose problem N4 and read on.

Another rule for determining triangle congruence uses a combination

of angles and sides:

A c r4
If two sides and the included angle of one triangle, &8, BT,
and ZABC, are congruent to the corresponding parts, XY, ¥Z,
and £ZxXvZ, of another triangle, that is, A8 & &V, BC & ¥Z, and
ZABC B £XYZ,
then the triangles are congruent: &AABC €& DXYZ.
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Note that the side-angle-side postulate requires that the angles be
contained between the two congruent segments. The figure below
shows why this is critical.

P R S u

Lo
™ o
i

Even though there are two sets of comresponding sides, PG & 5T and FR
£ SU, and a set of corresponding angles, ZPRQ & £ SUT, clearly these
triangles are not congruent. (Note: the dashed lines indicate how

& PRQ would look on top of asUT.}) In order for SAS to apply, make
sure the angle is at the point where the two segments meet. If ZRPQ
& £ usT had been given in the picture above, then you could prove
the triangles congruent by SAS. '

[1Do problem N4.
Choose problem N5 and read on.

Only under the circumstances indicated above is it possible to prove
triangles congruent when you have two sides and an angle as
congruent corresponding parts. However, no special circumstances
are necessary when you have two anlges and a side as congruent
- comresponding parts. The two rules ASA and AAS are used in these
situations.

ASA:

A c Zz

If two angles and the included side of one triangle, ZABC,
ZBcA, and BT, are congruent to the corresponding parts,
ZXve, ZvzX, and ¥Z, of another triangle, that is, ZABC & ZxvZ,
LBCcA & Zyzx, and BC & Y2,

then the triangles are congruent: AABC & AXYZ.




" Choose problem PROB3I1 and read on. T—

AAS:
A C F4

If two angles and 2 non-included side of one triangle, ZaBC,
ZBca, and K8, are congruent to the corresponding sides of
another triangle, £ZxXvz, £¥zx, and KY, that is, ZABC E £XYZ,
ZBCA & 2ZyzX, and AB & ¥V,

then the triangles are congruent: &ABC & AXYZ.

You now have four rules, 555, 5AS, ASA, and AAS, that you can use to
prove triangles congruent.

[1Do problem NS5. Do PC- PT

The REFLEXIVE Rule
In the following diagram it is given that ¥¥ & ¥Z and XW & WE:

Y

w

Can you apply $$$ to this picture? Well, its the right idea but
technically you cannot since $5S requires 3 sets of corresponding
sides and you've only been given 2. Where do you get the third set?
Well, clearly ¥# is congruent to itself. But, the question is how do
you prove ¥W & ¥¥? The REFLEXIVE rule is just for this purpose:

REFLEXIVE: A
If  segment AF appears in the diagram,
“then AB 2 AB. '
D
B
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To show that two segments are congruent by the REFLEXIVE rule you
do not need any statements as premises; it can be used as long as the
segment appears in the diagram. Thus, when you are selecting
premises for the REFLEXIYE rule you should select the diagram as the
premise. Let's do it with PROB311:

Using the REFLEXIVE rule:

* Move the mouse over to the problem diagram and

- ¢lick the left button. A box should appear around the
diagram. If you don't see a box, try again, but hold the
mouse button down a little longer.

* Now indicate you are "Done selecting” in the usuval way
by holding the right button down letting go when the
"Done selecting” option is highlighted.

* Type in the rule, REFLEXIVE and press ENTER.

* Enter the conclusion ¥V & XY.

When you are done with PROB311, this is how it should look on your
screen:

[ ] Finish PROB311.
Choose problem PROB352,

Getting Help

If you know what you want to do and can't seem to get GPT to do it,
feel free to ask Ken for help. If you're having trouble with figuring
" out how to do the proof, you can ask GPT.

Requesting Hints from GPT:

* Hold down the right button and wait for the menu to
pop up.

* When it does, move the mouse (still holding the right
button done!) past the "Done selecting” option up to
the "Explain" option. Let go of the right button when
“Explain” is highlighted.

« If you want a stronger hint, try "Explain" again. You
can keep getting more and more specific hints and if
you are really stuck the tutor will eventually show
you what to do.

GPT Text 12



Finish as many of the remaining problems on the fracking sheet as
you can.
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- Proof Construction Test: A

Name: , Date:
1d#: Start time:
Circle one: Pre Post ‘ : Finish time:

For each problem write a proof of the goal using the givens and any
of the rules on the Rule Summary Sheer You may assume that any
points which appear colinear (on the same line) in the problem
diagram are actually colinear. Here's an example problem and
solution:

A
0. Given: ABEAD
ive BE & oF
Goal: £BACE LDAC B 5
C
PROOF:
Statements: Reasons:
1.ABZ AD 1. Given
2.BCEDT 2. Given
2 R ¥R 3 REFLEXIE
4 ARCRY MPCD 4 S5S
§. LBAc £ £ DAC € CORRES-PARTS




/ 1. Given: JM & LM
ZJIMK & ZLMK

Goal: rtZMKL

PROOF:
Statements:

K

Reasons:

| 1. 9™ E LM
2. ZUMK & ZLMK

1. Given
2. Given



.o, ABEBC

2. Given: ZABG & ZCBEG
DESEG

Goal: £ZDCE & LGCE

Statements:

Reasons:

1. ABEBC
3 2. LABG £ LCBG
i Z.DEEEG

1. Biven
2. Given
X, Given
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3. Given: tLPSU P

INEQU
ZLPS & Lups
Goal: £ZLNU & ZugL
\ N Q
. u
- 8
t PROOF:
: Statements: Reasons:
1. rtZPsl 1. Given
z.[N=0U 2. Given

X LLPS E LUPS X. Given

e

i




EXTRA CREDIT
Remember: your reasons should only be rules which appear on the
role summary sheet,

4. Given: ABEBC A B C
. rtL6Bc
LZFAH B ZHCF
LADF £ ZCDH B
Goal: AREFC
G H
FPROOF:
Statemggts: Reasons:
§ t.AEEBC 1. Given
E 2. 1 2GHBC 2. Given
X, LFAHE JHCF 3. Given

4, ZADF = ZCDH 4. Given




Proof Construction Test: B

Name: ; Date:
Id#:__ Start time:
Circle one: Pre Post ’ Finish time:

For edch problem write a proof of the goal using the givens and any
of the rules on the Rule Summary Sheet You may assume that any
points which appear colinear (on the same line) in the problem
diagram are actually colinear. Here's an example problem and
solution:

A
0. Given: ABEAD
BCEDNT
Goal: ZBACE ZDAC B o
C
PROOF:
_Statements: Reasons:
1. AB £ AD 1. Given
z.ﬁ"ff’ﬁﬁ - 2. Given
3. AcFhe 2 REREXIE
4 ARRCEARDC Y, S¢S
S LBpc & <DAC CORRES-PARTS




1. Given: rtZJKM

ZHILE MK M
Goal: JM E iM
PROOF:
Statements: Reasons:
. et o JKM 1. Given
2, ZMJL E MUK 2. Given




2. Given: BY ECY X
LAXY E JDXY
LEBY & LRO0Y
Goal: £BIY & Zczy
A \ A v
<)
Z

FROOF.: g
Statements: Reasons:

1.BYECDY t.Given
. 2, ZAXY & Zovy 2. Given
: - X, ZRAY & ZxDY 3. Given

i

o

e
e
"‘ﬁ"’f%ggmwfz’f




3, Given: ZLONE ZPaN
ZRLP B £5PL
iR&P3

Goal: rtZINGg

) R s
PROOF:

Statements: Reasons:

1. ZLONE ZPON 1. Given

2. LRLP = Z5PL 2. Given

3. IREP5 X, Given




Remember: your reasons should only be rules which appear on the
rule summary sheet.

4. Given: FGEGH

. BEETD
LFBG £ LGDH
| LBGF £ ZDGH
Goal: ZABC & ZADC

PROOF:

; Statements: Reasons:
1. FG & GH 1. Given
2.BC=TO 2. Given
3. LFB6E LGDH 3. Given

4. ZABC E ZADG 4, Given
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Name : ifkg%t?a

HIDDEN FIGURES TEST = CF=1 (Rev.)

?éj

This is a test of your ability to tell which one =f five s:
can be found, in a more complex pattern. At the top »F aach vage
are five simple figures lettered A, B, £, D, and E. Beneath each row af
figures is a page of patierns. Each pattern has a row of letters beneath iz,
Indicate your answer by putting an X through the letter of the figure which
you find in the pattern.

NOTE: There is only one of these figures in each pattern, and this
Tigure will always be right side up and exaectly the same size as one of the
five lettered figures.

a2

i{}?
I B4

R
“
N

- &=

et ”1’
[
tn n

1

+
g

;_.E.

3

Now try these 2 examples,

TN DD

1 n
A B C D E A B C D E
» - - . a - = ) - -
The [igurzs telow show now the Figires are incluli2d in ks rrovlens.
Figure 4 is in zthe firet provlen and figure D in the seeond.

X 3 CDE A3 C XE

Your score on this test will T2 the number marxked sorrectly nminus o
fraction of the number = r?e& incorresily. Therefore, it will not be 30
your advanipge to guess unless rou 2re :bl2 to eliminmte one o Tmore of tus
ANsVEr choices 35 WIong.

b

You will have 12 minutes for each of the two parts of this test.
Bach part has 2 pages. When you have Tinished Part 1, STOP. Please
do not go on to Parit 2 until you are asiked io do so.

DO HOT TURN THIS PACE UNTIL ASKED TO DO 30.




) S Page 2

* Part 1 {12 minutes)

TV D2

D E

2.. 3-

A B C D E A B CDE A B CDE
. 5. 6.

ABCUDE A B C LU E A BCDE
8._ g9,

& B C D E A B C D E & B C D E

GO ON TO THE NEXT PAGE




rage 3

P CFal
& Part 1 {continued)
A B C D E
' 7
10. 12,
11.
4 B C D E A B C D E A B C D E

13. 1&&
: 4 BCDE ABCDE

15. 16.
A BC D E ABCDE

DO NOT TURN THIS PAGE UNTIL ASKED TC DC 350



| Part 2 (12 minutes)
C

19.

18.

A B C D E

A B CDE

22.

21.

A B C D E

A B C D E

25.

24.

W

A BCDE

A B C D E

ﬁn

e

S
/»w i
L

e

GO ON TO THE NEXT PAGE




Page 5 ‘e CP-1

Part 2 (continued)

DD

A
27.\ 28.
A B C D E A B C D E A B C D E
29. g, )
A B C D E A*B C D E
1.

v

A B C D E

DO NOT GO BaCK TO PART 1, AND :
DO NOT GO ON TC ANY OTHER TEST UNTIL ASKED TO DO sC.




) . g
Name L [}&§§~§

HIDDEN FIGURES TEST — CF-1 (Rev.)

This is a test of your ability to tell vwhich cne =f Tive sim
can be found in a more complex patterr. At the top »f ezch page .
are five simple Tigures lettered A, B, C, D, and E. Beneath each rov of
figures is a page of patterns. Each pattern has a row of letters beneath
Indicate your answer by putting an X through the letter of the figure whic
you find in the pattern.

NOTE: There is only one of these figures in each pattern, and this
figure will always be right side up and exactly the same size as one of the
five lettered figures.

Now try these 2 examples.

O DD

1 u
A 8 CDE A B C D E
The Tlgures oeliy 3now now the flgures ure (neludsl in The problins.
] 5 < - Eans - £ - ™ 3
Figure A is in the first rroblen und figure D in the ssoond.

o)

X B3 ¢C

E A 2 C X E

Your scorse on thisz test will Te ths number marked 2orrect.y minug o
fraction of the rmumber marked ingorresztly. Theref-re, it will not be o

your advantage L0 guess unless you are 2hie to e"r:na:e one or more of tis
answer choices 23 wrorng.

You will have 12 minutes for each of the two parts of this test.
Each part has 2 pages. When you have Tinished Part 1, S8TCP, Please
do not go on to Part 2 until yeu are acked teo do so.

DO ¥OT TURN THIS PAGE UiTIL ASKEDR TC DO 30.




Fage 2

* Part 1 (12 minutes)

DD 2

'

<

3.

afs ¢c b E A BCODE pECDE

A BCDE

A BCODE
GO ON TO THE NEXT PAGE '"




- Part 1 (continued)

SV D5

4
10. .
11. 12
A B CDE . A C D E 4 B C D E
13. 14,
A B C D E A B C D E
13, 16.
A B C D E 4 B C D E

DO NOT TURN THIS PAGE UNTIL ASKED TO DO S0



Fart 2 (12 minutes

. ¥

17.

A B C D E

20.

AN

A B C D E

23‘

A B C D E

18.

A B CDE
21%

A B C D E
24..

A B C D E

GO ON TO THE NEXT PAGE

19.
A B C D E

22.
A B C D E
I i

25.
A B C D E




Page 5 s CF-1

: Part 2 (continued)

A B C D E A™B C D E A B L D E

29. 3G,

A B C D E A B C D E

2.

AN

4 B C DE

DG NOT GO BaCX TO PART 1, AND

DC NOT GO ON TO ANY OTHER TEST UNTIL ASKED TO DO SC. o




Truth Judgment Test: A

Name: Date:
Id#: : Start time:
Circle one: Pre Post Finish time:

Below is series of yes-no questions which require you to do some
geomewic reasoning. The questions all request you to imagine certain
relationships about a problem diagram, for example, in the diagram below
imagine that mAT = 20 and mAB = 5.

A B C

Then you'll be asked whether some other relationship must be true, for
example, in the situation above would wBE have to be 15, that is, must mBC =
15?7 In this case the answer would be YES, since the two parts of AT must
add up to 20. The only thing you can assume about the diagram is that all
lines which appear straight are, in other words, all points which appear
colinear can be assumed to be colinear. However, the diagram may be
misleading in other ways. For example, in the diagram above, it doesn't
look like BT is longer than A8 even though the givens mAT = 20 and m&AB = 5
indicate it must be. Don't let the diagram sway your decision. Its the
relationships you are given that count. Here's the example above written

in shorter form.
{ YES)

CAN'T
TELL

a. If mAC = 20 and mAB = 5, must mBC = 157

¥
m
OII

In the next example, you CAN'T TELL for sure that mRS = 5 since the
information you are given m@S = 10 and m3T = 5 doesn't say anything about
the exact position of point R between Q and § — for example, m@GR could be 1
and mRS could be 9.

b. If miiS = 10 and m5T = 3, must mRS = 5?7 '“—“E—"W*W% YES

CAN’
TELL




1. If #zBCD & ZocA, must AE 1 €07 D YES

CAN'T
TELL

2. If rt LEHD, must TH & HD? E YES

o CAN'T
H TELL

3, If iM & Mg, must [0 L RA? R YES

CAN'T
TELL

4. If ytZAXC, Must ZAXC € LCXB? c YES

CAN'T
A % B TELL

5. If AB B XV, BC & ¥Z, and AT & X7, must ZABC & B Y YES

i?
£XY2] CAN'T
TELL

6. If ZABC & £ADC and ZACE & ZACD, must B D YES
AABC & AADC?
CAN'T

TELL




I

7. If ADEH & AGEH, MUSt rt LZEHG T YES

E
A\ TELLT
5 a TELL
H

8. If LBCF & £DCG, ZCFB £ ZC6D, and &F & 06, A_ D YES
must ZBAC & ZDAC?
: < CAN'T
TELL
c
9. If AB & DE, ZACB £ ZEGD, and BT & £6, must B E YES
AC 2 DG?
A ¢ CAN'T
TELL
A
10, If rizmkL and JK B K, must ZJmK & ZLmMK? M YES
CAN'T
. TELL
K L
11. If 21U £ Zrau and ZQTu & ZQRuU, most YES
9
Z5TU & Zsru? CAN'T
T R TELL

12, If 2aRS & 2715k and G5 £ 57, must AQRS & R YES
o
OISR CAN'T
. TELL
, T

T




13. If vt £c6E and TG E §§; must AECH % AFDH? YES
CAN'T
TELL
14. If &aXYW & AZYW, must ¥¥W 8 Y47 YES
| CAN'T
TELL
15. if rt2ZBCcA and &% £ CX, must AABX £ YES
AHADKT?
CAN'T
TELL
16. If ZFGB & ZHGD, ZGFB & LGHD, BC & BT, and YES
BF & BH, must Z6cB E n?
must £ £LGC CAN'T
TELL
17. If £Dc6 & <BCG and £CDG & ZCBG, must YES
g2 2ncG?
LDAG 8 £DCG CAN'T

TELL




‘

Truth Judgment Test: B

Name: Date:
H Id#: : Start time:
§ Circle one: Pre Post Finish time:

_ Below is series of yes-no questions which require you to do some

A geometric reasoning. The questions all request you to imagine certain
relationships about a problem diagram, for example, in the diagram below
imagine that mAT = 20 and mAPE = 5.

A B ¢

Then you'll be asked whether some other relationship must be true, for
example, in the situation above would mBC have to be 13, that is, must mEC
15?7 In this case the answer would be YES, since the two parts of A€ must
add up to z0. The only thing you can assume about the diagram is that all
lines which appear straight are, in other words, all points which appear
colinear can be assumed to be colinear. However, the diagram may be
misleading in other ways. For example, in the diagram above, it doesn't
look like BT is longer than AB even though the givens mAC = 20 and mAE = 5
indicate it must be. Don't let the diagram sway your decision. Its the
relationships you are given that count. Here's the example above written

in shorter form.
— @

CAN'T
TELL

a. f mAT = 20 and mAB = 5, must mBC = 137

e

In the next example, you CAN'T TELL for sure that mRS = 5 since the
information you are given m@3 = 10 and m3T = 5 doesn't say anything about
the exact position of point R between Q and § — for example, m@R could be 1
and mRS could be 9.

b. f mGS = 10 and m3T = 5, must mRS = 57




?

1. If vt ZEHD, must ZCHE § ZDHE? E
<»+H D
2. If AC & TH, must AB 1 TD? !D

3. If Z0RS & £ZTSR and LOSR E LTRSS, must
AOQRS & ATSR?
a

4. If vt ZAXC, must CTX & XD7 c
A—7Lx B
D
5. If AB & XV, ZACB § /£¥2¥, and BT £ ¥Z, must B
ZABC & 2%YZ? i ‘:
A C b 4

6. If ZFGB & ZNGD, ZGFB § LGHD, and BF £ DH,

must ZGCB & £Z6CD7

YES

CAN'T
TELL

YES

CAN'T
TELL

YES

CAN'T
TELL

YES

CAN'T
TELL

YES

CAN'T
TELL




7. 1f ZQMR & LLMR, must'TG L B2

8. If AB & DE, BC 2 EG, and AT £ EB, must ZABC &

LDEG?

9. If ZBCa & ZpcA and BT £ A0, must AABC B
aA”oc?

10. If &aDEH € AGEH, must DH & EH?

11.1f 27qu & 2rou and ZQTU £ ZOQRU, must
LISUE £TQu?

12. f aXyw & AzZYW, must rtZYwx?

m

YES

CAN'T
TELL

YES

CAN'T
TELL

YES

CAN'T
TELL

YES

CAN'T
TELL

YES

CAN'T
TELL

YES



13. ¥ et 2ace and %‘f g DT, must ZBAC £ LDACT A YES

CAN'T
B D TELL
14. Hrtgmt and EA & GH, must &ECH E AFDH? YES
CAN'T
TELL
C G D
15. If £/BCF & £DCG, ZCFB B ZC6D, BA & DA, and A_AD YES
BF £ DG, must ZBAC & ZDAC?
< < CAN'T
TELL
F c G
16. If ZpCc6 & £BCG and £CDG & ZCBG, must A YES
ADG & ZABG?
£ < B CAN'T
TELL
C
17. If rt £BCA and BC & €D, must AABX & A YES )
"
OADK" CAN'T
TELL
B D
C




i e

Proof Checking Test: A

Name; ’ Date:
1a#:___ ) Start time:
Circle one: Pre Post Finish time:

For each proof that follows check each line to see if it follows from
the preceeding lines. If it does, put "OK" after the line. If it does not,
put "doesn't follow" after the line and indicate why. In the example
below, line 3 is OK, but line 4 is not. There must be a congruent
triangle statement preceeding the use of CORRES-PARTS, but the
statement AABC & AADC is missing.

NOTE: There may be more than one error in these proaofs.

A
0. Given: ABEAD
BCE=DC
Goal: ZBAC E LDAC B D
C

PROOF:

Statements: Reasons:

1.ABZAD 1. Given

2.BCEDC 2. Given

5. ACEAC 3. REFLEXIVE OK.

4. LBAC & ZDAC 4. CORRES-PARTS &MM“} % AT 88

ahBe & aADC




1. Given: ADEBT B
- RBEDC
LABD E JCDB
Goal: £BAD & Z0CB
D
Statements: Reasons:
1. AD 2 BC 1. Given
2. AB &6C 2. Given
X. ZABD & £CDB %, Given
4. AABD & ACDB 4. SAS
5, ZBAD & ZDCB 5. CORRES-PARTS
w M L
2. Given: rt LJMK
JKEIR
Goal: &JKME ALKM
K
PROOF:
Statements: Reasons:
1. rt LJMK 1. Given
2. KELK 2. Given
3. ZJMK 8 LMK 3. CONG~ADJ-ANGS

4. MK & MK
T &JKM £ ALKM

4. REFLEXIVE
3.8AS5




3, Given: £0US £ LTUR
GSETR

LURS E ZUSKR

£0us § LTUR

Goal: ZURQ & LUsT

Q R S

FPROOF:

Statements: Reasons:

1. ZOUS E ZTUR 1. Given

2.5 TR 2. Given

3. ZURS & ZUSR 3, Given

4. ZDUS B LTUR 4, Given

5. LUQR & LuUTs %. AARS

6.0UETU 6. CORRES-PARTS
7. AUGR & AUTS 6. AAS

8. LURQ & ZUST 7. CORRES*PARTS

F
4. Given: GFEFH
LGFK B /HFK
Goal: £JGK E LUHK G H
J

PROOF;

Statements: Reasons:

1. GF & FH 1. Given

2. LGFK & ZHFK Z, Given
3.FKEFK 3. REFLEXIVE

4. AGFK & AHFK 4, ASA

3. LFKG & LFKH : 3. CORRES“PARTS
6. LJKG B LJIKH 6. CONG-ADJ~ANGS
1T.KIE8KJ 7. REFLEXIVE

8. AGKJ E AHXJ 8.5AS

9. LJGKE § ZJHY 9, CORRES-PARTS




4

Proof Checking Test: B

Name: Date:
Id#:___ Start time:
Circle one: Pre Post ~ Finish time:

For each proof that follows check each line to see if it follows from
the preceeding lines. If it does, put "OK" after the line. If it does not,
put "doesn't follow" after the line and indicate why. In the example
below, line 3 is OK, but line 4 is not. There must be a congruent
triangle statement preceeding the use of CORRES~PARTS, but the
statement AABC & AADC is missing.

NOTE: There may be more than one error in these proofs.

A
0. Given: ABE AD
BC2DC
C

PROQF:

Statements: Reasons:

1.AB B '_ﬂ'_ﬁ 1. Given

2.BCEDC 2. Given .

3. AC EAC 3. rercexive 0K

4. ZBAC E ZDAC 4. CORRES-PARTS W-{- M@\\:g AL ':;%?V\GJ
ARRC ZAADC




1, Given: BCEIT
iven: BCLEDC

LBAL B FDAC
Goal: ZLABC & ZADC

PROOF:

Statements: Reasons:
1.BCEDC 1. Given

2.AB ¥ AD 2. Given

3. ZBACE DAL 3. Given

4. AABC & AADC 4, SAS

5. LABC 8 LADC %, CORRES-PARTS

Y
2. Given: YWEWZ
LYXW 8 Zzxu x W
Goal: rtLXwZ
Z
PROOF:
Statements: Reasons:
1.VWEWZ 1. Given
2. A_Y)ﬁf B 7% 2. Given
3. X0 E XY %, REFLEXIYVE
4. ALHYXW E ATXW 4. SAS
5, ZXUY 8 ZXw2 3. CORRES-PARTS
6. rt LXW2Z 6. DEF-PERP




BA & bR
BF £ 06

Goal: £ZBAC & ZDAC

Given: £BCF g /ZDCG
ZCFB & 2C6D

G
FPROOF:
Statements: Reasons:
1. LBCF E 2006 1. Given
2. LLFB E LLGD ‘2. Given
3. BEAEDA X. Given
4.6F2D6 4. Given
%. HBCF £ ADCG . ASA
6.BCEDC 6. CORRES-PARTS
7.AC 2 AC 7. REFLEXIVE
8. ZBAC £ ZDAC 8. 555
E
4. Given: rtZCGE
CG 6D
Goal: LECHE LEDH
G 1§
PROOF:
Statements: Reasons:
1. ftﬁﬁﬁfw 1. Given
2.C6 &GO 2. Given
. EGEEG X. REFLEXIVE
4, ZCGE & LDGE 4, CONG-ADJ=ANGS
5. HCGE E ADGE =. ASA
6.CEESDE 6. CORRES-PARTS
T.-EHEER 7. REFLEXIVE
8. ACEH & ADEH 8. 555

9. LECH E LEDH

9. CORRES-PARTS




