
Carnegle-Mellon University 

COLLEGE OF HUMANITIES & SOCIAL SCIENCES 

DISSERTATION 

Submitted in partial fulfillment of the requirements 

for the degree of DOCTOR OJ!' PHILOSOPHY 

Title 1'UTORI NG CONCEPTS, PERCEPTS. AND RULES 

IN GEO~1ETRY PROBLEt1 SOLVING 

Presented by _-,Kt>JE:il:NN!I:II:E""T.I:lH...;R:!.......1:iK.l.,iO:J:iEDl.I.IJ.JN",G,,J;. E:J:R'--___________ _ 

Accepted by __ ··_··L~_··-_··__"':..::.;..:._-:-____ _ 

Thesis Supervisor. for the Committee 
I /'19'/ 
Date 

Approved by the Dean 

bate 



Tutoring Concepts, Percepts, and Rules in Geometry 
Problem Solving 

Kenneth R. Koedinger 

Psychology Department 

Carnegie Mellon University 

Pittsburgh, PA 15213 

Dissertation 

submitted in partial satisfaction of the requirements for the degree of 

Doctor of Philosophy in Psychology 



2 

ACKNOWLEDGEMENT 

Thanks to the United States Air Force Graduate Fellowship program for tuition and 
... financial support for the last three years of my graduate work. For intellectual support, I 

thank my advisor John Anderson and my committee members Jill Larkin, Kurt 
VanLehn, .and Herbert Simon. Also, I thank Richard Lehrer at the University of 
Wisconsin who helped me to realize that cognitive psychology (not computer science) 
was what I really wanted to do and that CMU's Psychology Department was the right 
place to do it. In addition, Rich has been a mentor and a close friend. There are many 
other friends who deserve special thanks for intellectual and personal support dl,Jring 
this time, most importantly, Christina Allen, Stephen Casner, Jonathan Cohen, 

-2:: 

Heather McQuaid, and Lael Schooler. Finally, I must thank my parents for their 
constant love and encouragement. 



TABLE OF CONTENTS 

Abstract ......................................................................................................... 3 

Introduction .................................................................................................. 4 

CHAPTER 1. A Study and Model of Geometry Proof Planning ...................... 5 

1.1 The execution space of geometry ..................................................... 5 

1.2 Expert human problem solving .......................................................... 7 

1.2.1 Step Skipping and Abstract Planning ............................... 7 

1.2.2 Use of the Diagram ............................................................... 9 

1.3 The Diagram Configuration Model ................................................... 1 0 

1.3.1 Diagram Configuration Schemas ...................................... 11 

1.3.2 DC's Processing Components ........................................... 12 

1.3.3 Avoiding Algebra in the Diagram Configuration Space 16 

1.4 Evaluation of the DC Model ............................................................... 1 7 

1.4.1 A Combinatorial Analysis .................................................... 17 

1.4.2 Accounting for Experts' Step-Skipping Behavior ........... 19 

1.4.3 Forward Inferencing and Completion by Exhaustion ..... 22 

1.4.4 DC's Limitations .................................................................... 23 

1.5 Comparison with previous geometry expert systems .................... 24 

1.5.1 Gelernter's Geometry Theorem Proving Machine .......... 25 

1.5.2 Nevins' Model ........................................................................ 25 

1.5.3 The Geometry Tutor Expert System .................................. 26 

1.5.4 Greeno's Perdix .................................................................... 26 

1.6 Discussion and Implications .............................................................. 28 

1.6.1 The Raw Material of Reasoning: Instances, Models, 
Schemas, or Rules ............................................................................... 29 

1.6.2 Contributions to the Study of Human Expertise .............. 30 

t.6.3 DC's Relation to Comprehensive Theories of Cognition32 

1.6.4 Implications for Geometry Instruction ................................ 35 

CHAPTER 2. ANGLE: A New Geometry Learning Environment ................... 36 

2.1 Motivations for Tutor Design: From DC to ANGLE ......................... 36 

2.1.1 The Implicit Plan Problem ................................................... 36 

2.1.2 Reifying Planning: Advantages of a Diagram-Based 
Method .................................................................................................... 36 

2.1.3 A Methodology for Theory-Based Tutor Design .............. 37 



2.2 The Expert Component ....................................................................... 38 

2.2.1 Summary of DC: ANGLE's Expert Component. ............. 38 

2.2.2 Efficiency COnsiderations .................................................... 39 

2.3 The Interlace component .................................................................... 40 

2.3.1 Motivation' for Interface Component Design .................... 40 

2.3.2 Screen Layout ...................................................................... .42 

2.3.3 Interlace Actions .................................................................... 43 

2.4 The Tutor Component ......................................................................... 53 

2.4.1 Motivation for Tutor Component Design ........................... 53 

2.4.2 Tutor Description ................................................................... 56 

2.4.3 Logical Feedback ................................................................. 57 

2.4.4 Strategic Hints ....................................................................... 58 

2.5 What's on the horizon for ANGLE? ................................................... 59 

CHAPTER 3. Initial Evaluation of ANGLE ......................................................... 61 

3.1 Introduction ............................................................................................ 61 

3.2 Method ................................................................................................... 61 

3.2.1 Subjects .................................................................................. 61 

3.2.2 Materials ................................................................................. 61 

3.2.3 Design ..................................................................................... 62 

3.2.4 Procedure ............................................................................... 62 

3.2.5 Motivation for Tests ............................................................... 63 

3.2.6 Tutoring Details; Slowing Down ANGLE ......................... 64 

3.2.7 Cuniculum .............................................................................. 64 

3.2.8 Test Grading .......................................................................... 64 

3.3 Results And Discussion ...................................................................... 65 

3.3.1 Overall Results of the Pre-Tests and Post-Tests ............. 65 

3.3.2 Differences in Planning vs. Execution .............................. 68 

3.3.3 Truth Judgment Results ....................................................... 70 

3.3.4 Analysis of On-line Tutoring Data ...................................... 75 

3.4 Conclusions of this Preliminary Evaluation .................................... .77 

CHAPTER 4. General Discussion and Future Plans ...................................... .79 

4.1 Plans for Continued Development of ANGLE ................................. 79 

4.1.1 Improving the Interface ........................................................ 79 

4.1.2 Improving TutOring Messages and Strategies ................ 81 

~; ... . ............................................ ... 



4.2 Improving Knowledge Measures ...................................................... 82 

4.2.1 Improving the Truth Judgement Test... .............................. 82 

4.2.2 The Need for a Measure of Schema Knowledge ........... 82 

4.3 Research Summary ............................................................................. 82 

4.3.1 Identify the Execution Space .............................................. 83 

4.3.2 Look for Implicit Planning in Verbal Reports .................... 84 

4.3.3 Model this Implicit Planning ................................................ 85 

4.3,4 Use the Model to Drive Tutor Design ................................ 85 

4.3.5 Tune the Tutor Implementation .......................................... 86 

Conclusion ................................................................................................... 87 

References ................................................................................................... 89 



3 

ABSTRACT 

This thesis is a mixture of basic and applied Cognitive Science research which has 
three parts. The first part describes a new theory of geometry proof skill and the 
empirical support for it. The second part describes the use of this theory in the 
development of a second generation intelligent tutoring system called ANGLE: A New 
Geometry Learning Environment. The third part describes a preliminary evaluation of 
ANGLE !;:omparing it with the first generation Geometry Proof Tutor (GPT). 

The theory of geometry proof skill presented here is based on a "step-skipping" 
analysis of the verbal reports of subjects solving proof problems. The data collected 
contradict previous theories that characterize geometry problem solving as heuristic 
search through a problem space of formal geometry rules. Instead of using such a 
localized and formal strategy, skilled subjects take a global planning approach that 
uses more intuitive conceptual and perceptual knowledge and leaves the formal 
details for last. A cognitive model 01 this approach (implemented as a computer 
program) turns out to be both more efficient than previous models and a better match 
to the human data. In addition, this model ties together a number of empirical results 
on the nature of human expertise and supports an inductive explanation of skill 
acquisition that is in contrast with the deductive approach typical of some dominant 
theories of skill acquisition. 

While the basic research has uncovered a psychologically plausible method for 
successful and efficient geometric reasoning, the goal of the applied research is to see 
if geometry instruction can be improved by teaching this method to students. I built a 
computer tutor, called ANGLE, to test this idea. In ANGLE, the instruction is delivered 
both implicitly through the structure of the computer interface and explicitly through 
tutoring strategies and messages. The deSign of ANGLE was theoretically motivated 
by the cognitive model. For example, ANGLE's interface reifies the key underlying 
processes in the cognitive model and, in doing so, provides students with a novel 
notation with which to think about geometry. 

With the creation of ANGLE it is possible to test the hypothesis that the 
development of more accurate models of skilled problem solving can lead to better 
instruction. We can test this hypotheSiS by comparing ANGLE with GPT, an earlier 
tutor for geometry based on a less accurate cognitive model. A preliminary 
·shakedown" study of this kind was performed and at this point, ANGLE is neither 
significantly better nor worse than GPT. The study revealed some limitations in the 
implementation of ANGLE and in the training curriculum. The thesis concludes with 
suggestions for remedies to these limitations that will put us in a better position to 
perform a more realistic test of the hypothesis. 



4 

INTRODUCTION 

This thesis is a mixture of basic and applied Cognitive Science research which comes 
in three chapters. Chapter 1 describes a study and a new theory of skilled geometry 
proof problem solving. Chapter 2 describes the use of this theory in the development 
of a second generation intelligent tutoring system called ANGLE: A New Geometry 
Learning Environment. Chapter 3 describes a preliminary evaluation study of ANGLE 
comparing it against the, first generation Geometry Proof Tutor (GPT). 

The contributions of this thesis include: 

1. A new methodology for verbal protocol analysis involving the identification of 
step-skipping with respect to the execution space of a domain. 

2. A new theory of geometry expertise (DC) that accurately describes human 
behavior, has an efficient computer implementation, and pulls together a 
number of empirical results on the nature of human expertise. 

3. A detailed characterization of the end-state of a complex learning process 
that challenges current learning theories and that can be used as a test-case 
for new learning theories. 

4. A theory-based approach to the design of the interface and tutoring 
components of an intelligent tutoring system (ANGLE). 

5. An initial test of the hypothesiS that the development of more accurate and 
powerful cognitive models of problem solving can lead to major 
improvements in the instruction of problem solving, particularly within the 
context of an intelligent tutoring system. 



5 

CHAPTER 1. 
A STUDY AND MODEL OF GEOMETRY PROOF PLANNING 

In this chapter I present verbal report data and a computer simulation of geometry 
proof planning. This domain is a difficult one for human problem solvers and has been 
studied by a number of cognitive science researchers (Gelernter, 1963; Nevins, 1975; 
Greeno, 1978; Anderson, et. ai., 1981). We were motivated to take another look at this 
domain by the observation that skilled problem solvers are able to focus on key 
problem solving steps and skip minor ones in the process of generating a solution 
plan. We found a surpri,sing regularity in the kinds of steps expert subjects skipped 
and built a computer model, called DC, 10 account for this regularity. 

1.1 THE EXECUTION SPACE OF GEOMETRY 

Geometry proof problem solving is hard. For a typical geometry proof, the search 
space of possible geometry rule applications (Le., theorems, definitions, and 
postulates) is quite large. Problem 7 in Figure 1.1 is a typical high school geometry 
proof problem. At the point in the high school curriculum where this problem is 
introduced there are 45 possible inferences that can be made from the givens of this 
problem, from these inferences another 563 inference can be made, from these 
greater than 100,000 can be made. 

While it is true, as Newell and Simon (1972) pOinted out, that there are multiple 
possible problem spaces for any problem domain, there is typically one problem 
space which is the most natural starting point for attempting to characterize human 
behavior in that domain1• It seems that quite often, particularly in math and science 
domains, this problem space is made up of operators which correspond one-to-one 
with the steps that problem solvers typically or conventionally write down in solving a 
problem in that domain. We call such a space the execution space of a domain as it 
corresponds with the way problem solutions are "executed" (though not necessarily 
with how they are planned). Applying this definition to geornetry, we find the execution 
space operators to be the various definitions, postulates, and theorems that appear as 
the "reasons" in the steps of the conventional Iwo-column format used for writing 
proofs. 

The number of inferences reported at the start of this section were inferences within 
the execution space. Clearly, the geometry execution space is enormous. In the DC 
model described below, we achieve search control by initially planning a solution 
sketch in a problem space that is more abstract (i.e., more compact) than the 
execution space. In contrast, the traditional approach has been to look for better 
search strategies and heuristics to use within the execution space. Gelernter's (1963) 
geometry theorem proving machine used a backward search strategy in the execution 
space and used the diagram as a pruning heuristic. More recently, Anderson, Boyle & 
Yost, (1985) built a geometry expert system as a cognitive model of students and a 
component of an intelligent tutoring system. The Geometry Tutor expert (GTE) used an 
opportunistic or best-first bidirectional search strategy in the execution space and 

1 Newell and Simon (1972, p. 144) refered to a "basic problem space" and identified a basic problem 
in cryplalilhmetic, chess. and logic. 



used various contextual features as heuristics for predicting the relevance of an 
operator. (I review these systems and a couple others in Section 1.5.) While GTE 
provided a reasonably good model of students. as evidenced by the success of the 
Geometry Tutor (Anderson, Boyle, Corbett & Lewis. 1990). I found that the mode of 
attack of human experts was distinctly different from that of GTE. It seemed important 
to be able to characterize this expertise both as a goal in and of itself and for 
pedagogical purposes. . 

Pmblem t 
GIVENS; ii'I1 b'seels A£ 

'--_-3~---=.E ;;U II ii£ 

B Prob/em 3 

GIVENS; rt "" ... IlB 

ii'I1 bisnts ""ABC 

GOAL; 0 midpoint of Jtl! 

... 0 C 

EcQ/:lIIl(]l ~ 

GIVENS, AD i iiE 
""oor i ""CEO 

"" ... BC i""ACB 

GOAL; .6.BDF i .6.CEG 

B r Ii c 

c EC0btw 7 

GIVENS; Jtl!ife' 
Ai1iiiiC 

GOAL; Au.1 fi! 

0 
B 

o D Erobfll(]l 2 

GIVENS; A£.1 cr 
... ---i':::---E "" ... XB iii ""EXD 

GOAL; ""BXC = ""OXF 

G r 

ErQ/:llem 4 

__ -=B;-__ c GIVENS: Ai: II OF 
iiI.1iiF 

D--+--r GOAL; iiI .1 Jtl! 

ErQ/:lle(]l 6 

... B !><:J GIVENS; E midpoint of Do 
AiJJlili! 

o C GOAL; .6. ... 01l " .6.CDB 

ErQ/:lle(]l 8 

GIVENS; 1"t II f'[ 

yLoR~----~~Z 

""XYZ i ""XZV 
""IIQP i ""UQT 

GOAL; ""PHQ i ""TUQ 

Figure 1.1. Geometry problems given to subjects and solved by DC. 

6 



1.2 EXPERT HUMAN PROBLEM SOLVING 

1.2.1 Step Skipping and Abstract Planning 

One feature that distinguishes geometry experts is that they do not make all the steps 
of inference that students do while developing a solution plan. Consider the protocol 
in Table 1.1 of an expert (Subject R) solving Problem 3 shown in Figure 1.1. The left 
side of the table contains the protocol and the right side indicates our coding of the 
subject's actions. 

TABLE 1.1 
A Verbal Protocol for a Subject Solving Problem 3 . 

BI: We're given a right angle - this is a right 
angle, 

B2: perpendicular on both sides [makes 
perpendicular markings on diagram]; 

.... * ...... Planning phase .. ***** 
Reading given: rt ,£ADB 
Inference step 1: AC 1 BD 

Reading given: BD bisects 
,£ABC 

7 

B3: BD bisects angle ABC [marks angles ABD 
andCBD] 

B4: and we're done. 

B5: We know that this is a reflexive [marks line 
BD], 

B6: we know that we have congruent triangles; we 
can detennine anything from there in terms of 
corresponding parts 

Inference step 2: AABD = ACBD 

"'''''''''''''''' Execution phase *"'**** 
In this phase. the subject refmes 
and explains his solution to the 
experimenter. 

B7: and that's what this [looking at the goal 
statement for the first time) is going to mean 
•.. that these are congruent [marks segments 
AD and DC as equal on the diagram). 

This expert had a reliable solution sketch for this problem in 13 seconds at the 
pOint where he said "we're done" (emphasis mine). He plans this solution sketch 
without looking at the goal statement (more on this curious behavior in Section 1.4.3) 
and In the remainder of the protocol he elaborates the solution sketch. reads the goal 
statement, and explains how it is proven. His words 'we're done" indicate his 
realization that the two triangles ABO and CBO are congruent and that therefore he 
knows everything about the whole problem - as he explains later: ·we can determine 
.1fllfInll,n from there In terms of corresponding parts". 



GOAL: 0 mldpo'nt of AC 

LADB=LCD 

CONG-ADJ 
-lINGS 

0 AC ~ BO 

tDEF-PERP 

GIVENS: rt LAOB 

DEF­
MIDPOINT 

CORBES-PARTS 

DEF­
BISECTOR 

BO bisects LABe 

REFLEXIVE 

Figure 1.2. The final solution for Problem 3. The givens of the 
problem are at the bottom and the goa! is at the top. The lines represent 
inferences with the conclusion at the arrow head, the premises at the 
tails, and the justifying geometry rule at the dot in between. The 
statements Subject R mentioned during planning (see Table 1.1) are 
numbered while the ones he skipped are circled. 

Figure 1.2 shows the solution to the problem in the proof tree notation of the 
Geometry tutor. Apart from the givens and goal, the statements which the expert 
mentioned while solving this problem are numbered in Figure 1.2 while the skipped 
steps are circled. Assuming this expert's verbalizations accurately reflect his working 
memory states (Ericsson and Simon, 1984), we conclude that the expert only makes 
certain key inferences in his search for a solution while skipping other, apparently 

inferences. 

1.1 Abstraction. In the terminology of the problem solving literature, it seemed 
Cc"N,,,,. that experts were initially planning their proof in an abstract problem solving 

(Newell & Simon, 1972; Sacerdoti. 1974; Unruh, et. aI., 1987). They were 
ar","o. r'inl'1 certain distinctions such as the distinction between congruence and equality 

""."" they were skipping over certain kinds of inferences, particularly the algebraic 

8 

It turns out that ignoring the algebraic inferences considerably reduces the 
the search space. We establish this fact in the analysis of the model below by 



comparing the size of the execution space for Problem 7 with and without the 
algebraic inferences (see Section 1.4.1). 

9 

We distinguish two types of abstract planning, risky and safe. Risky abstraction is a 
type of abstraction where details can be ignored that are sometimes critical to arriving 
at a correct solution. Newell and Simon (1972) showed that during planning, subjects 
solving logic problems would often ignore cartain aspects of the expressions they 
were working with. This abstraction was often very effective in guiding their problem 
solving search. However, sometimes subjects failed to successfully refine an abstract 
plan because one of the details ignored in the abstraction process turned out to be 
critical. 

A safe abstraction only ignores irrelevant details, i.e., details which only 
discriminate between objects that are functionally equivalent with respect to the 
problem solving task. For example, in ignoring the details that distinguish between 
congruence statements (e.g., As e CD) and measure equality statements (e.g., mAS = 
mCtf) geometry problem solvers are performing a safe abstraction since these 
statements are equivalent with respect to making proof inferences. Any inference that 
can be made from one can be made from the other. 

1.2.1.2 Macro-operators. In addition to performing useful abstractions, expert problem 
solvers have been characterized by the fact that they often collapse multiple problem 
solving steps into a single step (Anderson, 1983; Larkin, et. aI., 1980b). In the field of 
problem solving this is known as the formation of macro-operators (Nilsson, 1972; 
Korf, 1985). Macro-operators are the chunking together Of a sequence of operators 
which are often used consecutively to achieve a particular goal. Although geometry 
experts appear to have certain macro-operators, these operators are not just arbitrary 
compositions of geometry rules which can be used in sequence. Rather, there is a 
regularity in the kinds Of macro-operators experts have. Not only does the same 
expert skip the same kinds of steps on different occasions, but different experts appear 
to skip the same kinds of steps in similar situations. 

In summary, I found that experts were not planning solutions in the execution space 
as previous models have. In addition, it appeared that expert's planning space could 
not be accounted for by a straight-forward application of standard learning 
mechanisms to the execution space. Typical abstraction methods lead to risky 
abstractions, while experts' abstractions were safe. Typical macro-operator learning 
methods do not predict the kind of regularity in step-skipping that we found of the 
experts. Thus, I was led to search for a new problem space for geometry theorem 

. proving - one that was a safe abstraction of the execution space and that left out the 
. same kind of steps as the experts did. 

1.2.2 Use of the Diagram 

j3el!idels not working in the execution space, experts' inference making was largely 
to the diagram. I found that the regularity in experts' step-skipping can be 

, ...... .,.urtlu by knowledge structures that are cued by images in the problem diagram. In 
execution space inferences are cued off the known and desired statements in 

problem. Larkin and Simon (1987) suggest two reasons why diagrammatic 
epnesentaiio!1s might be critical to problem solving in domains like geometry. First, 

can use locality of objects in the diagram to direct inference and second, 
l~rCeptual inferences can be made more easily than symbolic inferences. 



10 

Let us consider their point about locality first. A familiar strategy of high school 
geometry students is to record proof steps by marking the problem diagram as an 
alternative to writing them down in statement notation. Such an annotated diagram 
aids students in holding together information that they need to make further inferences, 
In contrast, information within a list of written statements may be visually separated 
and require search to identify. For instance, to use the side-angle-side rule for 
inferring triangle congruence a problem solver must locate three congruence 
relationships - two between corresponding sides of the triangles and one between 
corresponding angles. In searching a list of statements for these three relationships, 
one might need to consider numerous possible combinations of three statements that 
exist in the list. However, if these relationships are marked on a diagram, one can 
quickly identify them since the side-angle-side configuration comes together in each 
triangle at a single vertex. In other words, related information is often easier to find in a 
diagram because it is typically in the same locality whereas the same information may 
be separated in a list of statements. This is the locality feature of diagrams. 

The example above illustrates the role of the diagram in aiding knowledge search 
- i.e., the search for applicable knowledge. The geometry diagram can also be used 
to aid problem search - i.e., the search for a problem solution1. The idea is that 
images in the diagram can be used to cue chunks of knowledge which serve as 
operators in an abstract planning space. The notion that eldernal representations can 
playa major role in guiding problem solving is the central notion of Larkin's display­
baSed reasoning approach (Larkin, 1988). Our approach elaborates on this one by 
showing how the organization of an eldernal representation can be used to cue 
abstract planning operators. These abstract operators reduce problem search by 
packing many execution steps into a single inference. 

Larkin and Simon's second point, that diagrams allow easy perceptual inferences 
to replace hard symbolic ones, is based on an assumption that perceptual inferences 
are generally easier than symbOlic inferences. While I agree with this assumption, it 
seems unlikely that perceptual inferences are somehow inherently easier (except in 
terms of the locality feature noted above). Rather, it is possible that perceptual 
inferences appear easier because, in general, they have been much more highly 
practiced than symbolic inferences. Nevertheless, since it is likely that students of 
geometry have had more prior experience with geometric images than with formal 
notations and since diagrams typically have the locality feature, students are likely to 
find perceptual inferences in this domain easier. 

1.3 THE DIAGRAM CONFIGURATION MODEL 

~~~~:Based on the observations of experts, I tried to design a system for geometry theorem 
pr01fina that would be both more powerful and more like human experts than previous 

The model I came up with, the Diagram Configuration model (DC), has one 
knowledge structure, diagram configuration schemas, and three major 

'Iocess;es:. diagram parsing, statement encoding, and schema search. Section 1.3.1 
~~~(:rib.~s DC's diagram configuration schemas, while Section 1.3.2 describes DC's 

',?blecmhapter 2 in Newell (1990) for more discussion on the distinction between knowledge search 
~~, search. 



processing components. Section 1.3.3 describes how DC uses a special class of 
diagram configuration schemas to avoid difficult algebra sub-proofs. 

1.3.1 Diagram Configuration Schemas 
The core idea of the DC model is that experts have their knowledge organized 
according to diagrammatic schemas which we call diagram configuration schemas. 
These are clusters of geometry facts that are associated with a single prototypical 
geometric image. Figure 1.3 shows two diagram configuration schemas. 

CONGRUENT-TRIANGLE&SHARED-SIDE: 

Configuration: x 

v z 
W 

Whole-statement: AXYW .. AXZW 

Part-statements: 1. XY = Xl 
2. yw=zw 
3. ,""Y • ,""Z 
... ,""YXW = ,""ZXW 
5. ,""XWY • ,""XWZ 

WayS-lo-prove: {1 2} {1 .. } {2 5} 
{of 5} {3 of} {35} 

PERPENDICULAR-ADJACENT-ANGLES: 

Configuration: 1 N 

L~M 
P 

Whole-statement: LM ~ MP 

Part-statements: 1. rt ,""LPH 
2. rt ,""MPH 
3. ,""LPH = ,""MPH 

Ways-Io-prove: {1) {2} nn 

Figure 1.3. Two examples of diagram configuration schemas. The 
numbers in the ways-to-prove indicate part-statements_ Thus, in the 
CONGRUENT-TRIANGLES-SHARED-SIDE schema {1 2} means that if the 
part-statements Wi = XZ and YW = zw are proven, all the statements of 
the schema can be proven. 

11 

The whole-statement and part-statements attributes of a schema store the facts 
which are associated with the geometric image stored in the configuration attribute. 
The configuration is a prototypical configuration of points and fines which is commonly 
• part of geometry diagrams. In Figure 1.3, the configuration on the left is a prototype 
. for any set of lines that form two triangles with a side in common. The Whole-statement 

is the geometry statement which refers to the configuration as a whole. The part­
statements refer to relationships among the parts of the configuration. The whole-
. of the CONGRUENT-TRIANGLES-SHARED-SIDE schema refers to the two 

involved while the part-statements refer to the corresponding sides and 
of these triangles. The ways-to-prove are used to determine whether 

Ifer,."""" can be made about a configuration. They indicate subsets of the part­
~tements which are sufficient to prove the whole-statement and all of the part-
. . . For example, the first way-to-prove of the CONGRUENT-TRIANGLES-SHARED-

.. schema. {1 2}, indicates that if the part-statements Wi. xz and YW = zw have been 



12 

proven, the schema can be proven - that is, all the other statements of the schema can 
be proven. 

The basic proposal is that planning is done in terms of these schemas rather than 
the statements of geometry. The problem solver tries to establish that various 
schemas are true' of the diagram. Establishing one schema may enable establishing 
another. Because there are a small number of schemas possible for any particular 
problem diagram, the search space of schemas is much smaller than the execution 
space. 

Consider Problem 3 and the expert protocol in Table 1.1. In the planning phase, 
the subject made four verbalizations. Of these four verbalizations, two indicate his 
reading and encoding of the given statements and two indicate inferences. 
Essentially, the subject solved the problem in two steps. In contrast, the complete 
execution space solution (see Figure 1.2) requires seven geometry rule applications. 
In other words, a problem solver who was planning in the execution space would take 
at least seven steps to solve this problem. DC's solution to this problem, like the 
subject's, is much shorter - it inVOlves only two schemas. An instance of the 
PERPENDICULAR-ADJACENT-ANGLES schema can be established from the givens of the 
problem, while an instance of the CONGRUENT-TRIANGLES-SHARED-SIDE schema can be 
established as a result. We now describe the processes DC uses to recognize and 
establish schemas. 

1.3.2 DC's ProceSSing Components 

DC has three major processing stages: 1) diagram parsing in which it identifies 
familiar configurations in the problem diagram and instantiates the corresponding 
schemas, 2) statement encoding in which it comprehends given and goal statements 
by canonically representing them as part-statements and 3) schema search in which it 
iteratively applies schemas in forward or backward inferences until a link between the 
given and goal statements is found. Human experts integrate these processes so that 
they do not occur in any fixed order except to the extent that some statement encoding 
and diagram parsing has to be done before any schema search can begin. However, 
in the computer simulation each process is done to completion before the next begins, 
We implemented these processes as separate stages so that we could independently 
evaluate the role each has in reducing search relative to planning in the execution 

In turns out the diagram parsing process plays a major role as we describe 

1 Diagram Parsing and Schema Instantiation. Diagram parsing is the process of 
;rer.nl'!"'~::"M configurations in geometry diagrams and instantiating the corresponding 

parsing consists of both a low-level component which recognizes 
,Sllllple oe()m~,lrir. objects and a higher level inductive component which hypothesizes 
1"":U:>IOle diagram configurations. 

,', The DC simUlation starts with a very simple point and line representation of a 
diagram. From this representation it must recognize line segments, angles, 

triangles and construct an internal representation of each. In addition, the 
records approximate size measures of the segments and angles it identifies. 

ng.the information created by this low-level object recognition process, DC 
instances of abstract configurations. Figures l.4a and 1.4b illustrate the 
c:onfigurations for proof problems in a typical course up to and including the 

tnangle congruence. In some cases an image in a problem diagram may 



13 

appear to be an instance of a known diagram configuration, but not actually be an 
instance because it is not properly constrained by the givens of a problem. On the 
other hand. some configurations do not need to be constrained by the problem givens 
to be a diagram configuration instance. These are called basic configurations and 
appear in the square cornered boxes in Figure 1.4a1• 

Segment·Based. 
Confi urations 

<: 
Adj·Segs Adj·AnllS 

'<. 
Adj-Supp 
·Angs Cross 

~lL-L+ 
Bisected Bisected AdJ·Com Perp·Adj Perp· 
~Seg -An ~An9s ~Angs cross 

KEY: 
Adj Adjacent Perp 
Cong Congruent Supp 
Comp Complementary Trans 

Perpendicular 
Supplementary 
Trans"""",, 

Possibly· Possibly· 
Parallel-linE:! Paran&ls~Trans 

Parallel 
~Lines 

~ 
Parallels· 
Trans 

Equilat Equilateral WP Whole-part congruence 
Iso. Isosceles 

Figure 1.4a. The diagram configurations for geometry up to and 
including the topic of triangle congruence. The configurations in 
rectangles are basic configurations which can be recognized immediately 
in problem diagrams. The other configurations are specializations of 
these in which certain relationships appear to hold among the parts of 
the configuration. 

Rt·Tr; 

yoU might notice from lOOking at some of the basic configurations, DC assumes that points which 
COllinear (on the same line) in a problem diagram actually are collinear. This assumption is 

(lmClnlvmade in high school classrooms and subjects were told that they could assume it In the 
they SOlved. 



14 

DC uses the low-level object information to recognize instances of the basic 
configurations. The other configurations are either specializations of the basic ones 
(and thus are attached below them in Figure 1.4a) or specializations of pairs of basic 
configurations (see Figure 1.4b). To recognize possible specializations, DC uses the 
segment and angle size approximations to check whether any of the basic 
configurations have the necessary properties to be specialized. For example, to 
recognize the ISOSCELES-TRIANGLE configuration, DC checks the triangles it has 
identified to see if any have two equal sides. 

WP.Adj.Seg 

• I 

WP·Adj·Se Equal·Ha" 
·Overlap ·Seg. -=------

Pai(ed~Configurations 

~ 
Wp·Adj·Comp· 
Angs-Overlap 

Triangle-Pairs 

,<y L1~ 
WP·Tri 
-Angs 

WP·Adj· 
Su • 

<t> 
Cong-Tri­
Shared·Sid 

Figure l.4b. The pairing of basic configurations where relationships 
hold among the corresponding parts of the configurations paired . 

. DC's diagram parsing algorithm corresponds with a very powerful visual process in 
We make no claims that the internal steps of this algorithm match those of 

'ooirresp<mclino human process. For instance, while it is quite likely that human 
""J~lU;C11 processes make extensive use of symmetry in recognizing geometric 

DC makes no use of symmetry. We do claim that human experts are capable 
niling these configurations and make extensive use of this ability in solving 



15 

The final result of diagram parsing is a network of instantiated schemas and part­
statements. Figure 1.5 illustrates this network for Problem 3. It is interesting to note 
that although no problem solving search is done in this first stage, in effect, most of the 
problem solving work is done here. The resulting network is finite and usually quite 
small. Searching it is fairly trivial. 

Figure 1.5. DC's solution space for Problem 3. The schemas DC 
recognizes during diagram parsing are shown in the boxes. The lines 
indicate the part-statements of these schemas. A solution is achieved by 
finding a path from the givens to the goal satisfying the constraints of 
the ways-to-prove slot of the schemas used. 

1.3.2.2 Statement Encoding. After parsing the diagram in terms of diagram 
.. configurations, DC reads the problem given and goal statements. Statement encoding 

corresponds to problem solvers' comprehension of the meaning of given/goal 
statements. We claim that problem solvers comprehend given/goal statements in 

. terms of part-statements. When a given/goal statement is already a part-statement, DC 
encodes it directly by appropriately tagging the part-statement as either "known" or 
~desired". However, there are two other possibilities. 

First, if the given/goal statement is one of a number of alternative ways of 
eXI)re!;sirll'l the same part-statement, it is encoded in terms of a single abstract or 

For example, measure equality and congruence, as in mAB = mBC and 
BE, are encoded as the same part-statement. Using this abstract representation, 

avoids inferences, required In the execution space, that establish the logical 
eQuivialel1ce of two alternative expressions of the same fact . 

. Second, if the given/goal statement is the whole-statement of a schema, it is 
ncocjed by appropriately tagging all of the part-statements of that schema as "knowo" 

case of a given or "desired" in the case of a goal. For example, the second 
of Problem 3, BO bisects LABC, is the whole-statement of a BISECTED-ANGLE 

~Mm", DC encodes it by establishing its only part-statement LABO = LeBO as 
(see Figure 1.5). Similarly, DC encodes the goal statement of Problem 3 by 
the part-statement AD = ED as desired. 

3 Schema Search. Based on its parsing of the diagram, DC identifies a set of 
configuration schemas which are possibly true of the problem. Its agenda 



16 

then becomes to establish enough of these schemas as true so that the goal statement 
is established in the process. Typically, one of the ways-to-prove of a schema can be 
established directly from the encoded givens. So for instance, in Problem 3 the 
PERPENDICULAR-ADJACENT-ANGLES schema can be concluded immediately. Other 
schemas require that additional statements be established about the diagram in order 
that they may be concluded. Thus, it was only after the PERPENDICULAR-ADJACENT­
ANGLES schema is established in the example problem that the CONGRUENT­
TRIANGLES-SHARED-SIDE schema can be established. At this level, DC is performing a 
search through the space defined by its diagram schemas much like the search GTE 
and other previous models perform through the execution space as defined by the 
rules of inference of geometry. We will refer to the space DC works in as the diagram 
configuration space. 

As in the execution space, a search strategy and heuristics can be employed to 
guide search in the diagram configuration space. At any point DC has a number of 
schemas which it might apply. The system has a selection heuristic to chose among 
these schemas. Although a more powerful heuristic could be used, we have found 
that because the diagram configuration space is so small, a simple heuristic is 
sufficient. In addition, this heuristic is consistent with our subjects who do not seem to 
spend much time evaluating alternatives, but rather forge ahead with the first 
reasonable inference that occurs to them. 

Essentially, DC's selection heuristic implements a bidirectional depth first search. 
A schema is applicable if there are proven part-statements which satisfy one of the 
schema's ways-to-prove. It is desired if its whole-statement or one its part-statements 
are goals of backward reasoning. If a schema is both applicable and desired, then DC 
selects it. Otherwise, DC either makes a forward inference by selecting any applicable 
schema or makes a backward inference by selecting any desired schema which is one 
statement away from satisfying ones of its ways-to-prove. 

The selection heuristic is made more efficient by only considering schemas which a 
quick estimate determines are potentially applicable. A schema is potentially 
applicable when the number of its part-statements which are proven is equal or 
greater than the size of the smallest way-to-prove. This estimate of applicability is 
much quicker to compute than checking all the ways-to-prove and it eliminates from 
consideration schemas which are clearly not applicable at the current moment. It also 
leads to an interesting prediction. Since the heuristic only estimates whether a 
schema is applicable, it is possible that a schema will be selected even though it is not 
applicable (and not desired). For example, a CONGRUENT-TRIANGLES-SHARED-SIDE 
schema may be selected when two of its part-statements are known even though 
!hese part-statements do not make up a way-to-prove (e.g., because they form the 
In~ufficient angle-side-side combination). More than once we observed subjects 
dOing just this, considering whether two triangles are congruent because they had the 

number of statements but failing because they did not have the right combination 
In Section 1.5.4.2, we relate this phenomenon to an "indefinite 

iUb£IOaliing" phenomenon identified by Greeno (1976). 

Avoiding Algebra in the Diagram Configuration Space 

. of the places where the Geometry tutor expert (GTE) gets bogged down while 
difficult problems is in the fruitless application of algebra inferences. 

expressions can be combined and manipulated in infinite variety and as a 



17 

result, algebra inferences often lead problem solvers into black holes in the search 
space from which they may never return (see the analysis in Section 1.4.1). Thus, it is 
worth discussing how DC avoids the black hole of algebra. 

DC avoids the ,algebra sub-space by having schemas which abstract away from 
algebra - in other words, these schemas are essentially macro-operators that make 
the same conclusions in one step that would require many steps to do by algebra. 1 

These schemas are not ad hoc additions to remedy the difficulty with algebra sub­
proofs. They correspond with particular geometric images and are formally no 
different than other diagram configuration schemas. They are instantiated as a result of 
diagram parsing and can be used when needed in place of difficult algebra sub­
proofs. Essentially, these schemas provide a way to recognize when algebra is 
needed and when it is not needed. GTE does not have such a capability. 

A single type of algebra schema handles most of the algebraic inferences. We call 
these schemas WHOLE-PART congruence schemas and they correspond with the 
configurations in Figure 1.4b that begin with WP. Our WHOLE-PART schemas are 
essentially the same as the WHOLE/PART schemas discussed in Anderson, Greeno, 
K~ne and Neves (1981) and Greeno (1983). 

A great variety of WHOLE-PART schemas can be formed by pairing any two 
component configurations which have corresponding parts (see Figure 1.4b). 
However, it would be misleading to suggest that all algebra sub-proofs can be solved 
using some WHOLE-PART schema. For example, the geometric proof of the 
Pythagorean theorem requires an algebra sub-proof involving multiplication and 
squaring which are outside the scope of WHOLE-PART schemas. Nevertheless, the vast 
majority of problems in a high school curriculum that require algebra sub-proofs fall 
within the scope of WHOLE-PART schemas. 

1.4 EVALUATION OF THE DC MODEL 

. The purpose of this section is to discuss the strengths and limitations of the DC model. 
First, we describe a formal analysis of relative size of the execution space and the 
diagram configuration space to argue for the computational efficiency of DC. Second, 
we show how the DC model captures the regularity in expert step-skipping that is 
contrary to straight-forward abstraction and macro-operator learning approaches. 

we provide protocol evidence for a forward reasoning preference displayed by 
exnArtj> on easier problems. Finally, we discuss some of the limitations of the DC m6;j:i: in particular, we try to identify the task situations which stretch or break the 

A Combinatorial Analysis 

301TlMIinn the problem solving effectiveness of DC with other models of geometry 
leor'sm proving is complicated by the fact that there are are multiple sources of 

• While geometry textbooks have lots of theorems to skip commonly occurring steps, they do not 
any theorems equivalent to the algebra schemas we are proposing (at least none of the textbooks 

'. seen do). There are two possible reasons lor why they are absent First. the utility of such 
. has been overlooked by textbook writers. I doubt that this first reason is right. Second. since 

are dependent on intormation which is implicit in the diagram but is not explicit in formal 
they are left out because it is dlltlcult to express them in geometry formalism. 



18 

intelligence in these models. In particular, the most important factors are 1) the 
problem space representation and 2) the search heuristics used. In addition to GTE, 
many previous models (e.g., Gelernter, 1963; Goldstein, 1973) search in the execution 
space. Variations in the problem solving effectiveness of these models can be 
characterized by differences in search heuristics. Since DC uses a different problem 
spaae as well as different heuristics, the task of comparison is complicated. A more 
tractable task is to compare the problem space representations independent of 
heuristics. Since search performance could be improved in both spaces by adding 
heuristics, an analysis of the size of the two spaces should approximate the relative 
effectiveness of models based on these spaces. 

1.4.1.1 Method of Analysis. The relative size of the execution and diagram 
configuration spaces was measured by comparing the "bushiness' of a brute force 
forward search in each space on Problem 7 in Rgure 1.1. The bushiness is measured 
by counting the number of operators that apply at each successive "ply' of operators. 
The first ply is all the operators that can apply to the initial state (the givens). The 
second ply is all the operators that can apply to the collection of known statements 
created in the first ply. And so forth. 

The operators we consider as part of the execution space are a collection of 27 
definitions, postulates, and theorems that represent a significant share of the rules in a 
standard geometry curriculum up to and including rules for proving triangles 
congruent. To simplify this analysis somewhat some rules concerning complementary 
and supplementary angles were left out. The operators of the diagram configuration 
space are diagram configuration schemas that correspond with the same slice of the 
curriculum (as shown in Figures 1.4a and 1.4b). 

In addition to performing this analysis on the execution space and diagram 
configuration space, we also analyzed the size of the execution space when all the 
algebra and algebra-related operators are eliminated from it. The three algebra rules 
are the ADDITION-POSTULATE, SUBTRACTION-POSTULATE, SUBSTITUTION. In addition to 
these, any rules whose conclusions relate angle or segment measures need not be 
considered since these relationships can only be acted on by algebra rules. This 
eliminates six more rules: DEF-MIDP01NT, DEF-BE1WEENNESS, ANGLE-ADDITION, DEF­
RIGHT-,"NC~LE. DEF-CONGRUENCE, and SUM-TRI-ANGS. We did the same analysis with this 
".UU\;t'u ru Ie set. 

1.2 Results and Discussion. Table 1.2 indicates the results for the analysis which 
be summarized as follows. In the execution space, 6 plies of breadth first search 
'tfiJU".lCl and more than 1 06 operator applications are investigated. In the 

{execution space without algebra 6 plies are required but only 27 operator applications 
investigated. Interestingly, the size of the search space is dramatically decreased 

a1gebr'a-related rules are not conSidered. Although this result is revealing, it doesn't 
'~~Ige:st that we can just throw out algebra. Many problems require algebra sub-

in their solutions and thus, the execution space without algebra is not a 
jrkstble alternative. However, the analysis indicates that algebra-related inferences 

a major source of combinatorial explosion. 



1st ply* 
2nd ply 
3rdply 
4th ply 
5th ply 
6th ply 

Total 

TABLE 1.2 
The Size of Three Different Problem Spaces on Problem 7. 

'Execution 
Space 
45 
563 
>105 

>1()5 
>1()5 
>1()5 

>106 

Execution Space 
without Al&ebra 
14 ' . 
I 
3 
1 
2 
6 

27 

Diagram 
Conf'ilWMion Space 
3 
3 
2 

8 

*A ply is all the operator instantiations that apply to the known statements 
produced by the previous ply. 

19 

Because of the larger grained operators of the diagram configuration space, only 3 
plies of breadth first search and 8 operator applications are required. This space is so 
much smaller than the execution space that a brute force search of this space can be 
effective whereas domain specific heuristics are necessary to effectively search the 
execution space. The diagram configuration space is also significantly smaller than 
the execution space without algebra indiceting its power is not derived solely by the 
algebra-avoiding WHOLE-PART schemas. In addition, whereas the execution space 
without algebra cannot solve problems, like Problem 5 in Figure 1.1, where algebra is 
required, DC can solve the majority of these problems. 

1.4.2 Accounting for Experts' Step-Skipping Behavior 

In the process of planning a solution, our expert subjects made inferences that skipped 
than 50 percent of the steps necessary for a complete solution in the execution 

SPSlce. In addition, we found that out subjects were skipping the same kinds of steps. 
this section, we show how the diagram configuration space accounts for this 

~f61gul~lrity in step-skipping behavior. 

H"",:;. 1 Experimental Procedure. The data used for this analysis comes from four 
sutljeC1:s' (B, K, J and F) verbal reports on one problem and one subject'S (R) verbal 
rep'Drts on eight problems. Two of the single-problem subjects (8 and K) were 
malnema1tics graduate students while the other two (J and F) were researchers on the 
~omAtrv tutor project. Subject R is a high school geometry teacher. All protocols 

collected using the concurrent protocol methodology of Ericsson and Simon 
where subjects are asked to report what they are thinking as they problem 
The four single-problem subjects were audio-taped as they entered their 

iut,lCInS using the interface of the Geometry tutor, while Subject R was video-taped as 
' ..... ,"''' pencil markings on a paper diagram and reported his solution verbally. The 

of computer interactions on one hand and the video record of diagram marking' 
on the other hand helped to resolve ambiguous verbal references like 

iSAnm,,-nt is equal to this segment". 



20 

1.4.2.2 Method of Protocol Analysis. The protocols were segmented into 1) planning 
episodes where subjects made inferences for the first time in the process of 
developing a proof sketch, 2) refinement episodes where subjects refined their proof 
sketch by filling in skipped steps, and 3) execution episodes where subjects indicated 
steps in their final solution. The execution episodes of the single-problem subjects 
correspond with the verbalizations they made while entering steps into the Geometry 
tutor interface. The execution episodes of Subject A, on the other hand, correspond 
with the verbalizations he made while reporting his final proof to the experimenter. 

This particular analysis is focussed on the planning episodes. The goal of the data 
analysis was to identify the steps in a complete execution space solution that were 
mentioned by the subject during planning1• The execution space solution for each 
subject-problem pair was recorded in a proof tree diagram and each statement that the 
subject mentioned during planning (except the given and goal statements) was circled 
on this diagram. Figure 1.2 illustrates the result of this analysis for the protocol of 
Subject A in Table 1.1. 

1.4.2.3 Model Predictions. We derive predictions from DC by assuming that a 
statement will be mentioned for each schema application. If the schema has a whole­
statement, we predict that this statement will tend to be mentioned. If it does not 
contain a whole-statement, e.g., like the WHOLE-PART schemas, we predict the 
concluding part-statement will tend to be mentioned. We predict that all other 
statements will tend to be skipped. This prediction entails a quite simple assumption 
about the verbalization of problem states, i.e., one verbalization per schema 
application, however, it provides a good fit to the data. Below we discuss how the 
major difference between the predictions and the data might be accounted for by a 
slightly more complex assumption about verbalization. 

1.4.2.4 Results and Discussion. In the twelve subject-problem pairs, less than half of 
the intermediate steps were mentioned (37/98) and more were skipped (61/98). The 
model predicted that 29 steps would be mentioned and 69 skipped. Tables 1.3 and 
1.4 show the data for each subject-problem pair and will be discussed below (note that 
Subject A, Problem 7 is in both tables). Of the 29 steps that DC predicts will be 
mentioned, 23 were actually mentioned and only 6 were not. Of the 69 that DC 
predicts will be skipped, 55 were skipped and only 14 mentioned. A Chi square test 
was used to determine whether this distribution could have occurred by chance. The 

. Chi square value (X2(1) = 30.3) indicates it is unlikely that the model's fit to the data is 
'. chance occurrence (p < .001). We can take a closer look at the data to see how well 

result generalizes across subjects and problems, particularly since the subjects 
over represented by Subject A and the problems by Problem 7. 

The complete execution space Solution for the single·problem subjects is the one they entered into 
interlace. The muHiple-problem subject R was not forced to indicate all the details of a 

execution space solution and thus, to decide what execution steps he skipped, we filled in the 
the shortest execution space path possible. 



21 

TABLE 1.3 
Model-data Fit for All Subjects Solving the Same Problem. 

Predicted MenDQ!! Predicted Skill 
Actually Actually Actually Actually 

Slll ProM Mention Ski.\! Mention Skill 
R 7 3 0 3 2 
B 7 2 0 1 3 
K 7 3 0 1 6 
J 7 2 0 1 3 
F 7 3 2 3 9 

Total 13 2 9 23 

Table 1.3 shows the data for all five subjects on Problem 7 and indicates the model 
to data fit is not peculiar to Subject R. A Chi square test on the column totals yields 
X2(1) = 14.1, p<.OO1. Table 1.4 shows the data for Subject R on eight problems and 
indicates that the results are not peculiar to Problem 7. A Chi square test on the 
column totals yields X2 (1) = 22.0, p<.001. 

TABLE 1.4 
Model-data Fit for One Subject Solving Eight Problems. 

Predicted Milngon Predicted Skill 
Actually Actually Actually Actually 

Slll ProM Mllntion Ski.\! Meng2n Skip 
R 1 1 2 1 1 

2 1 0 2 3 
3 2 0 0 4 
4 1 0 0 5 
5 2 0 0 8 
6 3 0 1 2 
7 3 0 3 2 
8 1 9 

Total 13 4 8 34 

If the model fit perfectly, the totals for columns two and three in the Tables would be 
The predictions are most deviant from the data in column three - the subjects 

l'Ieritiol1ed fourteen' steps that were predicted to be skipped. Eleven of these cases 
situations where the subject must use more than one part-statement in order to 

a schema. In such situations, subjects often mention one or more of these part­
For example, in planning a solution to Problem 3, part-statements LAOB: 

and/or LABO:LcBO might be mentioned because both are needed to prove the 
II\jG,RUEN,r-TI'IIANGiLE~)'SI'iAf~E[)-SliDE schema. To account for such situations our 

the third column totals from Tables 3 and 4 yields seventeen. However, since subject R, 
appears In both tabies, we need to subtraClthree from seventeen to get the proper overall Iota I 



22 

simple model of verbalization, namely, "one step mentioned per schema", could be 
elaborated to predict that extra verbalizations will tend to occur for schemas which 
require more than one part-statement to be proven. This more complicated model of 
verbalization would only provide a slightly better match to the data. While the number 
of misses (column 3) would be reduced by eleven, the number of false alarms (column 
2) would be increased by six. The increase in false alarms results from the fact that 
subjects occasionally skipped part-statements thll alternative model of verbalization 
predicts they should mention. 

Other reasons why the predictions do not exactly fit the data include: 1) subjects 
may fail to mention an inference step for some model-unrelated reason, for example, 
because they momentarily forgot the experimental instruction to think aloud; 2) 
subjects, especially teachers, may feel inclined to explain themselves and thus, 
immediately report intermediate steps that support a leap of inference but were not a 
part of it; or 3) subjects may be at a different stage of expertise than DC by either a) 
being behind, having not yet acquired certain configuration schemas, or b) being 
ahead, having acquired larger configurations than the ones DC uses. A potential 
instance of (3b) may explain the 2 steps in Subject R's solution to Problem 8 (see 
Figure 1.1) that he skipped though we predicted he would mention them (see column 
two of Table 1.4). In this case, it appeared that the subject used a diagram 
configuration that combined two of DC's and thus was able to skip extra steps that the 
current version of DC cannot. 

1.4.3 Forward Inferencing and Completion by Exhaustion 

Of the eight problems Subject R solved, he solved five by a purely forward search 
(problems 1, 3, 4, 5, 8 in Figure 1.1), one by a forward search that was guided by the 

. goal (Problem 2), and two using some backward inferences (problems 6 and 7). By 
pure forward search, we mean that the problem solver did all of his reasoning without 
using, and often without reading, the goal statement. The five purely forward solutions 
were on problems that tended to be easier for him in the sense that he solved them in 
less time. Only one of these five took longer than any of the other three. 

One somewhat peculiar and interesting aspect of Subject R's forward reasoning 
was that on a number of the simpler problems he was able to decide he had finished 

before reading the goal. For instance, while solving Problem 5 he said, "I 
even look at the goal but I've got it". At some point in solving these problems he 

knCIWS everything he can about it. As he says while solving Problem 3, ·we can 
';dEitenminle anything from there" (see Table 1.1). It is as if he exhaustively searches all 
/iP()$siible forward inferences. But, an exhaustive search of the execution space for a 

.U!IlliClllllr problem is unlikely given its typical vast size - particularly since algebra 
ciniAfAn",,'; could chain on infinitely. On the other hand, the size of the diagram 
~rlfiglJra1lion space for these problems is quite small. In fact, it is bounded by the 
~Ullloer of plausible diagram configurations which appear in the problem diagram. 

it seems that Subject R is able to stop his forward inferencing and conclude he 
when he has proven (or considered) all the plausible configurations. 

et. al. (1980a) describes physics experts as working forward on simpler 
>l)lems where they are relatively sure that "solving all possible equations will lead 

to a full understanding of the situation, including the particular quantity they are 
for." This description provides a good characterization of Subject R if we simply 

·solving all possible equations" by "applying all possible configuration 



23 

schemas·. One difference, though, is that physics equations typically correspond with 
one step in the solution of a physics problem, while diagram configurations 
correspond with multiple steps in a geometry proof. This is particularly important since 
the execution space of geometry is so large. Without the chunking provided by 
diagram configurations, it seems unlikely that a working forward strategy could work 
on all but the simplest geometry proof problems. Subject R's ability to purely work 
forward on relatively difficult problems as well as his ability to recognize he is done 
before reading the problem goal are further evidence for the DC model. 

1.4.4 DC's Limitations 
We discuss DC's limitations both in terms of how the computer simulation could be 
extended to be a more complete and accurate model of geometry expertise and in . 
terms of what situations cause trouble for DC's particular problem solving approach. 
The computer simulation could be made more complete by adding procedures 1) to 
refine and execute the abstract plans DC currently creates, 2) to determine when and 
where constructions are necessary, 3) to integrate diagram parsing and schema 
search. and 4) to draw diagrams from general geometric statements. 

1.4.4.1 Plan Execution. A model of plan execution would involve finding solutions, 
either by retrieval or by search in the execution space. to the series of short 
subproblems that result from planning. The majority of these subproblems are only 
one or two execution steps long. The longer subproblems are algebra proofs of the 
steps skipped by the WHOLE-PART schemas. These proofs share the same general 
structure and experts do them by retrieval for the most part. Even if the solutions to 
these subproblems are done from scratch, they are small enough that they can be 
easily solved by search in the execution space. Adding procedures for doing search 
in the execution space would have the additional advantage of providing a way to 
perform certain types of algebra inferences that do not correspond with any of DC's 
current diagram configurations. These inferences often involve the pairing of two 
different types of configurations. For example. the RIGHT-TRIANGLE and the ADJACENT­
COMPLEMENTARY-ANGLES configurations (see Figure 1.4a) can be paired to form an 
equation between the two non-right angles of the right triangle and the two adjacent 
complementary angles. We could supplement DC with such kinds of paired-
configurations (as in Figure 1.4b) or. alternatively, the execution space search 
component could be used to discover such pairings. 

, ....... <:. Constructions. The computer simulation could also be made more complete is 
adllinn procedures to perform "constructions·, that is, the drawing of auxiliary lines 

ornhl",m diagram to provide new inference possibilities. Currently DC is not 
callable of performing constructions and thus, cannot solve the class of geometry 
proolems which require them. However, we fee! that DC is particularly well-suited for 
,aCkling a construction capability. The major decision points in solving proof problems 

require constructions are 1) deciding when a construction might be 
~ee<:led. and 2) deciding what construction to introduce. Typically, geometry systems 
ltfelnntto perform constructions only when other methods appear to be failing. Since 

di8!gralm configuration space for any particular problem is relatively small 
rnpalred to the execution space, DC could quickly and definitively determine when a 
lstrur.tinn is necessary by exhaustively searching this space. The task of proposing 
lentiiatiy useful constructions could be performed in DC by completing 
IlIgllrations that partially match images in the diagram. 



24 

1.4.4.3 Integrating Diagram Parsing and Schema Search. The computer simulation 
could be made more efficient and more accurate as a model of human problem 
solving by integrating the diagram parsing and schema search processes that are 
currently performed in separate stages. Instead of doing all of the diagram parsing 
ahead of time, it should only be done on demand when the system is focussed on a 
part of the diagram which hasn't been parsed. Initially, the encoding of the problem 
given and/or goal statements could provide a focus of attention on a particular part of 
the diagram that involves these statements. DC could parse this portion of the 
diagram in terms of the configurations that appear there. Later, any new part­
statements proven via schema search could shift the focus of attention to other parts of 
the diagram which could be similarly parsed. What remains to be defined is the range 
of attention, that is, how much of the diagram should be parsed at one time. 

Integrating the parsing and schema search would make DC more efficient in cases 
where the diagram contains over-specialized figures, that is, configurations that look 
true, but do not follow from the problem givens. In such cases, the current diagram 
parsing process instantiates configuration schemas that will never be used in problem 
solving. For example, the line GH in Problem 7 turns out to be irrelevant to the solution 
- there Is no given information that bears on it. However, since it appears parallel to 
line AB, the diagram parser instantiates numerous schemas that correspond with 
apparent relationships like AGCK = AHCK, IS os ACGH, AB II GH, and GH .L CD. Without 
line GH the diagram contains 15 schema instances - with GH it contains 28 more. In 
the process of schema search these schemas are never used, so the work of 
instantiating them is wasted. If diagram parsing was done on demand, however, this 
extra work would not be necessary. 

1.4.4.4 Diagram Drawing. While over-specialized problem diagrams can cause a 
slight amount of extra work, they do not cause DC to fail on problems. However, if the 
diagram is improperly drawn, that is, it does not correctly represent the problem 
givens, the current simulation will not be able to solve the problem. For example, if the 
line SO In the diagram for Problem 3 did not appear perpendicular to the base, DC 
would not instantiate the PERPENDICUlAR-ADJACENT-ANGlES schema and thus, could 
not solve the problem. One way to extend DC to deal with such diagrams is to allow it 
to consider configurations beyond those which are apparent in the diagram, like 
PERPENDICULAR-ADJACENT-ANGlES in the example above. An alternative involves 
following the standard classroom wisdom which suggests that such diagrams should 
. redrawn. In particular, we could extend DC to deal with inaccurate diagrams by 
•. ~~~~~~a~~diagram drawing facility that could draw diagrams to accurately reflect a 
•.•. ~ givens. 

1.5 COMPARISON WITH PREVIOUS GEOMETRY EXPERT SYSTEMS 

theorem proving models have been developed by numerous researchers, 
primarily AI concerns (Gelernter, 1963; Goldstein, 1973; Nevins, 1975) and 

one, besides GTE, based on human data (Greeno, 1978). We make 
o.mr" .. i""",,,o with Gelernter's model because it was the first. Nevin's model because it 

most powerful system we are aware of. and GTE and Greeno's model because 
were based on human data. 



25 

1.5.1 Gelernter's Geometry Theorem Proving Machine 

Gelernter's model was the first AI model of geometry proof problem solving and it 
worked by performing a backward heuristic search in the execution space. The use of 
the execution space puts the model at a disadvantage that could only be overcome if 
the heuristics in Gelernter's model make up for the power gained by the abstract 
nature of the diagram configuratiqn space. However, this is not the case. The major 
heuristic of Gelernter's model was to reject backward paths when they became 
implausible in the diagram. Since only plausible configurations are considered by 
DC, these backward paths that Gelernter's model rejects are not even in the diagram 
configuration space for a particular problem. Thus, they are rejected implicitly without 
ever being considered. 

Gelernter made no claims about modeling the inference-by-inference behavior of 
human problem solvers. And even at a more descriptive level, his model's emphasis 
on backward reasoning is inconsistent with the opposite forward reasoning emphasis 
of human geometry experts. In addition to Subject R's clear forward reasoning 
preference, a much larger proportion the other subjects inferences were forward rather 
than backward. 

1.5.2 Nevins' Model 

Nevins (1975) presents a geometry theorem-proving program which is probably more 
effective and efficient than any other geometry model. His major emphasis was on 
structuring the problem space of geometry such that a predominantly forward 
reasoning strategy could be effective. He claimed that human experts engage in much 
more forward inferencing than backward inferencing. Although he provided no 
evidence and was probably reacting to the purely backward reasoning strategy of 
most expert systems at that time, it is interestingly that he made this claim well before 
empirical evidence came out verifying his intuition in physics problem solving (Larkin, 
at. aI., 1980a), medical diagnosis (Patel & Groen, 1986), and now in geometry. The 
success of forward inferencing in Nevins' model is made possible by the way in which 
he structured the problem space. Unfortunately, Nevins is not very clear about the 
exact structure of this problem space. The structure is embedded in the processes he 
describes. 

However, the problem space implicit in his description is much more like the 
'~iaiQram configuration space than the execution space. Because the model only 
'tEl(:oglnizE~s six predicates (LN=line, PR=parallel, PRP=possibly parallel, RT =right 
:,,!,II~lot, ES=equal segment, and EA=equal angle), it is effectively working in an abstract 
. . space. It ignores the distinction between congruence and measure equality 
. well as the distinction between midpoint and bisector predicates and their 

;orr'esoonclina equality predicates. The model makes inferences using a number of 
paradi!:lm:s'which are cued by certain features of the diagram and which make 
~~~:~~~~~i~i~n the form of the predicates. These paradigms share many et with diagram configuration schemas: 1) they are cued by the diagram, 

can make multiple conclusions, and 3) they are otten macro-operators, i.e., 
IPaole of inferences which require multiple steps in the execution space. However, 

are embedded in complex procedures within Nevins' model and are not clearly 
represented like diagram configuration schemas are. Nevins' model 

not USe appearances in the diagram as DC does to create candidate schemas. 



26 

Although he did not present it this way, the success of Nevins' model can be 
considered further evidence for the computational efficacy of abstract planning in 
geometry. What the DC model adds is an explicit and uniform representation which 1) 
makes clear why Nevins' model worked and 2) makes clear how it could be extended, 
say, by adding diagram configurations for circles. An important side-effect of DC's 
explicit and uniform representation is that it is teachable. Also, in addition to DC's 
computational advantages, we have provided empirical evidence that human experts 
solve problems like DC. 

1.5.3 The Geometry Tutor Expert System 

The Geometry tutor expert system (GTE). as described in Section 1, was designed as 
a model of ideal student problem solving to use as a component of an intelligent 
tutoring system. The system works in the execution space and uses a best-first 
bidirectional search strategy. To be successful in the otherwise intractable execution 
space, GTE uses heuristics to guide its search. These heuristics were deSigned to be 
psychologically realistic and consistent with the ACT" theory of cognition (Anderson, 
1983). The general idea behind heuristics in ACT" is that student problem solvers 
learn various contextual features that predict the relevance of an inference. These 
contextual features are incorporated in the left-hand sides of the production rules and, 
in GTE, are either features of the problem diagram, previously established statements, 
or goals. As an example consider the diagram of Problem 7 in Figure 1.1. Although 
one can immediately infer GK=GK and CD=CD by the reflexive rule, only the latter is a 
sensible inference that good students make. According to GTE this is because good 
students have learned that one situation where the reflexive rule is useful is when the 
segment is a shared side between two triangles that might be congruent. Thus, GTE 
has a rule of the form: 

IF there are plausibly congruent triangles ACD and BCD, 
THEN conclude CD=CD using the reflexive rule. 

GTE has a large set of such rules some of which reason forward from the givens of 
a problem and others which reason backward from the goal. Each rule has an 
aptness rating which reflects how likely it is to be useful. For instance, a variant of the 

. rule above which tests whether there is a goal to actually prove the two triangles 
••. congruent has a higher aptness rating than the rule above which in tum has a higher 

rating than a rule which simply suggests that any segment is congruent to 
-rhese aptness ratings correspond with production strengths in the ACT" theory. 

GTE provides a reasonably good model of student problem solving and has the 
adl/anfanA of being embedded In a unified theory, i.e., ACT", that provides an account 

many other cognitive tasks. However, from a computational point of view, the model 
.. .. the disadvantage that it often gets bogged down in fruitless search while 

~elTlptirlg difficult problems, especially ones where algebraic inferences are required. 
. . .. there is no systematic way to assign aptness ratings to rules so extending 

model becomes increasingly difficult. From an empirical point of view,GTE's 
I solving approach does not correspond with the abstract planning approach 
we observed experts using. 

Greeno's Perdix 

used verbal report data from geometry students as the basis for the design of a 
theorem proving model called Perdix (Greeno, 1978). Like GTE, it is more 



accurately characterized as a model of geometry students rather than geometry 
experts. Unlike Nevins, Greeno's goal was not so much to build a powerful problem 
solving model, but rather to capture the problem solving behavior of geometry 
students. In relation, our goal in building DC was to capture the problem solving 
behavior of geometry experts so as to have a model which is not only a powerful 
problem solver, but also solves problems in a way that can be profitably taught to 
students. 

27 

Perdix used a mixture of execution space operators and more abstract macro­
operator-like operators. With respect to algebraic reasoning, Perdix contained 
operators which are essentially the same as DC's whole-part schemas (Greeno, 1983) 
and thus, could skip over the details of algebraic proofs. However, with respect to 
geometric reasoning, Perdix operators appear to have been procedural encodings of 
geometry rules, that is, execution space operators. In the empirical research 
associated with Perdix, Greeno made a couple of observations which are particularly 
notable in relation to DC. The first concerns the use of perceptual processing in 
geometric reasoning and the second concerns a useful type of non-deductive or 
"indefinite" reasoning that both students and experts appear to engage in. 

1.5.4.1 A Physical Distance-Reducing Heuristic. The first observation is the way in 
which good students appear to use a visually-based heuristic to guide their selection 
of appropriate inferences in a certain class of "angle-chaining" problems (Greeno, 
1978). These problems are common in the parallel-line lessons of geometry curricula 
and typically involve sets of parallel lines, for example, two sets of two parallel lines 
forming a parallelogram on the inside. Students are either 1) given the parallel-line 
relationship(s) and the measure of some angle and asked to find the measure of 
another angle or else 2) given only the parallel lines and asked to find a relationship 
between two angles. In either case, the problem usually involves finding some other 
angle which connects the two angles in question via the transitivity rule. Although 
these problems typically contain numerous angles to choose from, Greeno observed 
that students are fairly regular (and accurate) in their selection of this "chaining angle". 
They tend to pick an angle which, in the diagram, is physically between (or close to it) 
the two angles to be connected. 

Perdix models this behavior by forming a "scanning line" between the known and 
desiired angles in the diagram and candidate chaining angles are considered in order 

their proximity to this scanning line. This scanning line method is an instance of a 
,,,,,._.- general method for proposing subgoals by identifying objects that are physicallY 
,~'twElen the known and desired objects. The method is based on a heuristic: an 
,()~erajtion which reduces the phYSical distance between known and desired objects 

also reduce the logical distance between them. AHhough DC has not been 
prc)gFclmnned with such a distance reducing heuristic. such a heuristic might aid DC on 
~arlderproblems in identifying diagram configurations which are most likely to provide 

between known and desired configurations. The protocol data provides no . 
Vidence that experts use this heuristic, however, the problems subjects solved were 

particularly demanding of such a heuristic. 

Indefinite Goals. A second notable behavior that Greeno (1976) observed of 
lmllirv students is that they often engage in the setting of what he called "indefinite 

Whj~n given a problem, like Problem 5, with a goal to prove two triangles 
'!lIU';nl, instead of attempting to prove particular corresponding parts congruent that 

of a particular triangle congruence rule, e.g., side-angle-side. subjects 



28 

attempt to prove any of the corresponding parts statements they can. These 
statements are indefinite goals because they are not associated with any definite rule. 
DC accounts for indefinite goals as they are a natural consequence of the way in 
which it applies schemas in backward inferences. In DC, a schema is applied in a 
backward inference by making all part-statements desired. In cases where the ways­
to-prove of the schema require multiple statements, the desired part-statements are 
indefinite goals since they were not set in order to achieve any particular subset. 

A related type of reasoning is characteristic of certain types of forward inferencing 
in DC. In particular, the selection heuristic may chose to apply a TRIANGLE­
CONGRUENCE-SHARED-SIPE schema in the forward direction because a sufficient 
number (2) of the schema's part-statements are known. This selection is indefinite in 
the sense that these two part-statements may not be the right ones to match any of the 
ways-to-prove. Geometry experts also appear to make such indefinite selections. At 
some point during Problem 7, subjects R, B, K, and F all considered proving AACD 5 
ABCD and/or AAKD = ABKD because they had established the congruence of three 
corresponding parts but found that they could not since these parts formed the 
insufficient angle-side·side combination. 

h should be noted that both the Nevin's model and Perdix (Greeno, Magone, and 
Chaiklin, 1979) are capable of introducing constructions into the geometry diagram 
allowing them to solve a class of problems that DC cannot as it currently does not have 
a construction capability. However, as noted in Section 1.4.4, we feel that DC is 
particularly well-suited for adding a construction capability. 

1.6 DISCUSSION AND IMPLICATIONS 

Previous models of geometry problem solving do not provide an explanation of the 
. abstract planning abilities of experts. Geometry experts can quickly and accurately 

develop an abstract proof plan that skips many of the steps required in a complete 
proof. We built a computer simulation of geometry expertise, DC, which models this 
abstract planning behavior. DC's planning is based on perceptual chunks called 
dialtlram configurations which provide a reliable index to clusters of relevant geometry 

c .......... To establish the computational advantages of DC, we performed a problem 
sp;~ce analysis that showed that DC is more efficient than models based on the 
"''''''"ul,lun space of geometry. In addition, we showed that DC's particular approach to 
.~bl;tract planning is much like that of human experts. Making a conservatively simple 

mption about how DC would verbalize its inferences, we found that the model 
job of accounting for what steps experts mention (and skip) while 

!le'feIClpinlg an abstract proof plan. 

We now turn to a discussion of how these findings relate to or might inform other 
in cognitive science. In particular, we discuss: 1) how these findings bear on 

controversy in the human reasoning literature (see Holland, et. aI., 1986) between 
instances, mental models, schemas, and natural logiC rules as the 

,.. basis for human reasoning, 2) how these findings contribute to the 
... of expertise in general, 3) how these findings fit (and don't fit) within unified 

of cognition like ACT" and Soar, and 4) how these findings might be applied 
nnr""", geometry instruction. Chapter 2 follows up on this last point by focussing 

these findings have been used in the development of a 2nd generation 
tutoring system for geometry. 



1.6.1 The Raw Material of Reasoning: Instances, Models, Schemas, or 
Rules 

29 

Holland, et. al. (1986) discuss four alternative theoretical views on human reasoning 
that have grown primarily out of the empirical research on syllogism problems and 
Wason's (1966) selection task. These views present different hypotheses about the 
nature of the basic material with which we reason. They are listed below in order from 
a view of reasoning knowledge as extremely specific to a view of knowledge as 
extremely general. 

• SpecifiC instances: Reasoning proceeds by recalling specific instances of 
past reasoning events which indicate an appropriate conclusion (see Griggs 
& Cox, 1982). 

• Mental models: Reasoning is performed by domain-independent 
comprehension procedures that construct a concrete model of the problem 
situation from which conclusions can be read off (Johnson-Laird, 1983; Polk 
& Newell, 1988). 

• Pragmatic reasoning schemas: Reasoning is performed by the application of 
pragmatic reasoning schemas which are abstractions of past reasoning 
events (Cheng & Holyoak, 1985). 

• Natural logic rules: Reasoning proceeds by the application and chaining 
together of abstract rules, much like the formal rules of logic, to deduce a 
conclusion (see Rips, 1983; Braine, 1978). 

While the knowledge elements of the specific instance and mental model views are 
more concrete and declarative in nature, the knowledge elements of the pragmatic 
reasoning schema and natural logic rule views are more abstract and procedural. In 

... the first two views, the knowledge elements are descriptions of concrete objects and 
••... situations in the world which must be interpreted to derive actions or conciusions. In 
.•.. the latter two views, the knowledge elements do not correspond 10 any particular 
.<silua'lion or set of objects, but to large categories of situations and they prescribe an 
faction to be performed or conclusion to be made in that general situation. 

The questIon we wish to pursue is how our growing understanding of reasoning in 
fits within the spectrum of these four alternative views of human reasoning. 

uelQmj~trv reasoning, as characterized by DC, is least like the nalurallogic rule view. 
schemas are specific 10 geomelry and thus, are quite unlike the general natural 
rules. On the other hand, DC's schemas are not specific enough to equate them 

the specific instance view. In general, neither students nor experts solve 
eornetlrv problems by simply recalling past experiences of solving them. 

are left with the two intermediate views. Because the distinction between them 
~$()mewh;atsubtle we describe them in more detail. The mental model approach is of 
'!!~i~~~~:~f generality in that it uses general language abilities to construct a model 
~fl of the problem statement, but the effectiveness of this model is limited by the 
aSoner'", specific knowledge of the language of the domain. The pragmatic 
soninn schema view is intermediate in that reasoning is based on knowledge 

which are general enough to apply to numerous problem types 
,dolnaills but are not as general as formal logic rules which are applicable in any 



30 

domain. One implication of the difference between these approaches is that the 
mental model approach explains reasoning errors in terms of working memory 
failures, while the schema approach explains them in terms of negative transfer - i.e., 
the mapping of a schema to a situation where the schema-based inference is incorrect 
(Holland, et. aI., 1986). 

DC has similarities with both the mental model and pragmatic reasoning schema 
view. It is similar to the mental model approach in that it uses the problem diagram as 
a specific referent or model of the abstract problem statement indicated by the givens 
and goals. Many features of this model are usually too specific to be relevant, for 
example, the particular lengths of segments. However, other specifics of the model 
can be important as they can provide a cue to relevant inferences, for example, 
congruent-looking triangles can cue an inference to prove them congruent. A concrete 
model has the advantage of making important features or relationships clearly 
apparent (visible in this case) whereas they are only implicit in abstract statements. In 
addition, the cues from the model have the effect of allowing the problem solver to 
ignore lots of potentially applicable but irrelevant logical knowledge. A model building 
procedure like the one Johnson-Laird proposes is not necessary since the diagram 
provides a ready-made modeP. According to the mental model approach, what is left 
for the problem solver to do is properly annotate the model and read-off the 
conclusion. This is essentially what we propose experts do - they annotate the 
diagram, on paper or in their mind's eye, by noting established relationships. 

However, the annotation process is not as straight-forward as it is in other problems 
the mental model approach has been applied to. Rather, it involves fairly complicated 
logical inferences, including, for example, the checking of ways-to-prove. This 
inferencing requires the abstract geometric knowledge which is part of the DC 
schemas. This knowledge is more like pragmatic reasoning schemas in that it is 
applied procedurally and it appears to be acquired as abstractions of past geometry 
problem solving experiences. 

Although the four views can be posed as competing hypotheses, it is likely that 
human reasoning in general contains elements of each. While the DC model lends 
support for the use in geometry of a combination of the mental model and pragmatic 

. reasoning schema approaches, neither approach by itself is sufficient. 

.6.2 Contributions to the Study of Human Expertise 

1 What's behind Expert's Forward Reasoning Ability? One claim that has been 
'.m;ade about human experts is that they show a greater tendency than novices 
;(S!specially on easier problems) to work forward from the givens of a problem rather 

backward from the goal. This result has been observed in physics word problems 
\Ul.loon McDermott, Simon, & Simon, 1980a), in classical genetics word problems 

.,,(Srnith & Good, 1984), and in medical reasoning (Patel & Groen, 1986) by comparing 
problem solving behavior of experts and novices. Although the comparisons were 

between different subjects, the invited inference is that as a person acquires skill 

,,!~~~~e~~~~~% proof problems given in classrooms include a diagram, it is not uncommon to 
'" ",luurDI without a diagram, for example, the problem in figure 2 could be stated as 'prove that 
::';~,~~~~.~: altitude of a triangle bisects the angle, It also bisects the base". Such problems are 
i:ee:it;:';";':": by drawing an appropriate diagram, a concrete model of this abstract statement, and then 

as usual. In this case, the problem solver is constructing a mental model. 



31 

in one of these domains their problem solving strategy will tend to shift from working 
backward to working forward. To observe this shift within the course of skill 
acquisition, Sweller, Mawer, and Ward (1983) developed a toy domain, using three 
equations from kinematics, where subjects could become "experts' in a relatively short 
period of extensive practice (77 problems). They found the expected shift as subjects 
worked forward on significantly more of the final problems than they did on the initial 
problems. ' 

In geometry we have observed an expert (Subject R) exclusively working forward 
on a number of the simpler problems we asked him to solve. This ability to essentially 
solve certain problems without lOOking at the goal is an ability geometry novices do not 
have. We would like to address the issue of how Subject R and experts in general are 
able to successfully work forward. 

It should be pointed out, first, that this shift to working forward is not characteristic of 
all domains of expertise. In some domains the given information is inadequate to 
successfully solve problems by forward search. Jeffries, Turner, Polson, and Atwood 
(1981) showed that expert programmers do not work forward from the problem givens 
(i.e., the programming language primitives), rather they work backward from the goal 
information (i.e., the program specifications). The shift to working forward appears to 
be characteristic of deductive domains, like equation chaining or proof domains, 
where the given information is quite rich and uncharacteristic of deSign domains, like 
programming, where the given information is poor. 

In domains where working forward can be successfully performed, it should not 
surprise us that learners adapt toward using it more often. By working forward, 
problem solvers can write down inferences as they make them and relieve the memory 
burden of storing previous solution steps. Backward or bidirectional search, on the 
other hand, demands that the problem solver encode and integrate more information 
as well as remember intermediate goals. Sweller (1988) makes Similar arguments 
and presents a computational model and experimental evidence to support them. The 
upshot is that if a learner can develop the ability to successfully work forward, she can 
alleviate some of the extra working memory burden required by a backward strategy. 

Sweller (1988) also proposes an explanation for expert's ability to successfully 
,."nvonforward. He suggests that experts use schamas to classily problems into 
.. ~~~~~~~E~s.that carry implications for appropriate moves to make. He defines a 
>7 as "a structure which allows problem solvers to recognize a problem state as 

DSI,tlnrlinn to a particular category of problem states that normally require particular 
diagram configuration schemas of the DC model fit Sweller's definition. 

allow the categorization of sub-problems based on recognizing prototypical 
im~It,.: .. , in the problem diagram and the retrieval of the relevant sub-proof. 

The key point is not so much that experts will necessarily prefer working forward. 
RRlih<>r it is that as a result of the their superior skill, experts are capable of 
~Uc(leSl$fully working forward without recourse to backward reasoning. Knowledge in 

form of schemas Is what allows them to do so. However, schemas alone are not 
. The schemas must be large enough or the problem small enough so that 

reduce the search space sufficiently for forward reasoning to be effective. We 
seen how DC's schemas make the search space of even relatively difficult 

quite small, for example. the forward search space of Problem 7 is only 8 
19m,." (see Table 1.2). Still, all of our experts did some backward reasoning on 



32 

problem 7. It was only on simpler problems, like 3 and 5 with only 3 relevant schemas, 
that Subject R performed a purely forward search. 

1.6.2.2 Perceptual Chunks and Problem Solving Performance. One Of the more robust 
results regarding expert-novice differences is the enhanced memory of experts for 
problem-state displays. This difference has been established in a variety of domains: 
chess (De Groot, 1966), electronic circuits (Egan & Schwartz, 1979), baseball (Voss, 
Vesonder, & Spilich, 1980), computer programming (Jeffries, Turner, Polson, & 
Atwood, 1981), and algebra (Sweller & Cooper, 1985). In the earliest study of this 
type, it was shown that chess masters can remember realistic board positions much 
better than chess novices can (De Groot, 1966). This result does not arise from any 
innate perceptual or memorial advantages experts might have, rather it arises from 
their extensive chess experience. Experts are no better than novices at remembering 
boards with randomly placed pieces. 

While these recall abilities are correlated with game playing skill, it has yet to be 
decisively established whether they are a necessary part of game playing skill or 
whether they are merely a side-effect of spending lots of time staring at a chess board. 
The theory behind the recall results is that subjects perceive the board in terms of 
prototypical configurations of pieces, "chunks", and that experts' chunks are made up 
of more pieces than those of novices (Chase & Simon, 1973). Chase and Simon have 
suggested that experts associate appropriate chess moves with these chunks and 
Simon and Gilmartin (1973) have a model of chess perception. However, a model has 
yet to be written which is capable of both performing the recall task and playing chess. 
At the same time, the proposal that experts associate moves with these chunks has 
received criticism (Holding, 1986). 

The DC model is a step towards establishing a detailed theoretical connection 
between perceptual chunks and problem solving performance. The diagram 
configurations of DC provide a ready-made theory of perceptual chunks in geometry . 

. We have already seen that these perceptual chunks provide the basis for expert 
problem solving performance. It would not be difficult to model superior problem-state 
recall in geometry by chunking problem diagrams in terms of diagram configurations. 
Thus, it appears that the appropriate knowledge representation is in place in DC to 
model both problem-state recall and problem solving skill in geometry. Implementing 

recall component and replicating De Groot's findings in the domain of geometry are 
for future research. 

Turning back to chess, DC's use of diagram configurations for abstract planning 
+minht the appropriate analogy for an integrated chess model. Rather than cueing 

...... u,Gu moves, chunkS in chess may be more effectively thought of as problem state 
abstr~INit'n., which provide the basis for an abstract problem space in which players 

plan and evaluate multiple-move strategies. 

DC's Relation to Comprehensive Theories of Cognition 

. · •.. ·1972 Allen Newell gave his well known "20 questions' talk (Newell, 1973) in which 
.... argued that to avoid spinning our wheels in cognitive science research we need to 
... to integrate local hypotheses and domain models into global theories that 

for cognition across a wide variety of tasks. Creating such comprehensive 
)eOl1es has now become a major research effort (Anderson, 1983; Newell, 1990; 
mnlson-Laird. 1983; Holland, et. aI., 1986). In this section we try to place DC in terms 

of these theories, ACT> (Anderson, 1983) and Soar (Newell, 1990). We 



address the issue of whether the mechanisms of problem solving and learning in 
these theories can account for expert geometry problem solving as modeled by DC. 

33 

Because both ACT· and Soar use a production rule representation of knowledge, 
our first challenge is to find a way to express DC's schemas as production rules in 
such a way as to not change the resulting behavioral predictions. Consider the 
TRIANGLE-CONGRUENCE-SHARED-SIDE schema in Figure 1.3. This schema can be 
represented as 6 production rules whose left-hand sides correspond to the 6 ways-to­
prove of the schema and whose right-hand sides contain 5 actions which correspond 
with the 5 part-statements of the schema. A similar translation could be made to 
express backward schema application in terms of productions. Note that these 
production rules are macTO-operators with respect to the execution space of geometry 
in that they have the effect of numerous execution space operators. 

Is anything lost in translating schemas to productions? In terms of problem solving 
behavior the answer is probably no. However, another question we need to ask with 
respect to the ACT" and Soar is whether the particular productions that correspond 
with DC's schemas could result from the learning mechanisms of these theories. This 
question is more problematic. The clusters of productions corresponding with DC's 
schemas organize the formal rules of geometry in a particular and efficient way. It is 
not clear how the production rule learning mechanisms in either ACT· or Soar could 
arrive at such an organized set of productions. 

These theories essentially view skill acquisition as involving two phases: 
knowledge acquisition and knowledge tuning. In the knowledge acquisition phase, 
the learning system uses information about the problem domain, e.g., problem 
descriptions, problem constraints, example solutions, etc., to build some kind of basic 
problem space. In geometry, this would involve acquiring the formal rules of geometry, 
that is the execution space operators, through instruction and examples. In the 
knowledge tuning phase, the basic problem space is elaborated through problem 
solving practice so that the system becomes more effective and efficient. Much of the 
research on skill acquisition in ACT" and Soar has focussed on this second 
knowledge tuning phase. The basic approach of these theories to knowledge tuning 
is a process of reducing the number of productions required to perform a procedure -

both use a type of macro-operator creation mechanism in which 
c~~~':t~~'e~r applicable productions or operators are composed into a single 

; or macro-operator1• 

There are both empirical and computational reasons to doubt that DC derives from 
macro-operators of the execution space operators. First, the step-skipping 

''''~I''''''""Y we observed is an unlikely consequence of this approach. Although ACT" 
Soar have some stipulations on the appropriate context in which macro-operators 
formed, there is little in them that indicates which sequences of consecutively 

~ppUcalble productions are more likely to be composed than others. Thus, we would 
expect any regularity in the kinds of steps that would be skipped in an abstract . 

cut off a potential confusion based the distinction in Soar between operators and productions. we 
to make clear that when we use "macro-<lperator" in reference to Soar, we are not referring to 

combin.~i"'n ot Soar operators inlo macro-<lperalOrs - Soar has no direct mechanism for doing this. 
we are talking about the chunking of Soar productions into blgger productions. 



problem space of composed execution operators. However, such a regularity is 
exactly what we observed of subjects. 

34 

To be more precise both theories stipulate that macro-operator formation occurs 
within a goal structure, that is, macro-operators are formed of consecutive productions 
applied to achieve, the same goal. Thus, the clustering of productions into macro­
operators will reflect the organization of a problem solver's goals and subgoals and to 
the extent that this goal structure is consistent across many problems, a step-skipping 
regularity could emerge. However, it appears more likely that marco-operator-like 
knowledge in geometry is not primarily organized around goals but is organized 
around objects and aggregations of objects in the domain. According to this view, 
DC's schemas are not really macro-operators in the sense of being derived from 
execution operators. Rather, they derive from perceptual chunking of domain objects 
and they merely bare a macro-operator relation with execution space operators. 

A second reason to question the macro-operator learning approach comes from 
evidence in the verbal reports that in the process of executing an abstract plan, 
subjects could not always immediately fill in the steps they had skipped during 
planning. For example, in Problem 7 subjects would plan to prove the goal from ~ADC 
= ~BDC, apparently using the PERPENDICULAR-ADJACENT-ANGLES schema. During plan 
execution, some subjects did not immediately know how to justify the link between 
these two statements - they attempted an algebra proof or searched the list of 
available geometry rules we provided. However, if they had learned this schema by 
composing execution space operators, that is, the very operators that they needed at 
this pOint, we would expect that these operators would be readily available. Since 
these execution operators remain necessary to execute proof plans, there is no reason 
why they would be forgotten in the course of skill acquisition. It appears that experts' 
knowledge of the macro-operator-like schemas is occasionally stronger than their 
knowledge of the corresponding execution operators. This evidence is inconsistent 
with a view of the schemas deriving from the execution operators - provided, as is the 
case here, that the execution operators are still necessary to solve problems . 

. ' . Finally, there are computational reasons to question macro-operator explanation of 
.. step-skipping. Recall the macro-operator characterization of the TRIANGLE-

;'~:~~::~'~~~~~~'~2~ schema given above. The collection of such macro-for each schema, call it S, Is a restricted subset of the space of possible 
S is restricted in two ways. First, S does not contain any of the 

.polssibile macro-operators which could make inferences between statements which are 

.wnole··sta,ten1ents of schemas, for example, it doesn't contain an operator that could 
perpendicularity directly from triangle congruence In a problem like Problem 3. 

AN\r,rI S does not contain any of the 2, 3, or 4 action macro-operators that would be 
9an".rI on the way to a 5 action macro-operator like the one corresponding with the 

,IRIAN(3LE-CC)N<JiRU:ENICE-SHARI:D-:SIDE schema. To achieve DC's simplicity in search 
and match to the human data, a composition mechanism would need to 

)rell'ent a proliferation of unnecessary macro-operators. It Is not clear how this 
!striicticln could be implemented in ACT· or Soar. 

might consider whether this restriction could be achieved within the Soar 
;tlltl6ctlJre by having a hierarchy of problem spaces corresponding with the desired 

However, this approach begs the question - how would this hierarchy 
earin,," in the first place? 



35 

1.6.4 Implications for Geometry Instruction 
While the main focus of Chapter 2 is on how DC can provide the basis for an improved 
intelligent tutoring system. our improved understanding of geometry problem solving 
may also have more general implications for how geometry is taught in the classroom. 
On one hand. the DC model is a theory of the internal thinking processes of skilled 
geometry problem solvers. On the other hand. it can be taken seriously as new 
method for dOing geometry proofs which can be explicitly taught in the classroom. In 
addition. the organization of knowledge in DC suggests an alternative task-adapted 
organization of the geometry curriculum. Typical geometry curricula are organized 
around topics and focus pn teaching the formal rules of geometry. Alternatively. a 
curriculum could be organized around diagram configuration schemas and have the 
structure in Figures 1.4a and 1.4b. The formal rules. then, could be taught in context of 
how they are used to prove schemas. Such a task-adapted curriculum organization 
can help students to remember rules and access them in the appropriate situations 
(Eylon & Reif. 1984). 



36 

2. 
ANGLE: A NEW GEOMETRY LEARNING ENVIRONMENT 

Tutor building is a time consuming task often involving as many as 10 person years of 
effort. This chapter reports on ANGLE in a fairly early stage of its development - after 
abOut 1.5 person years of effort. Our development pace is certainly faster as a result of 
the previous research on the Gedmetry Proof Tutor (GPT) and the LISP tutor 
(Anderson, Boyle, Corbett, & Lewis, 1990). In particular, ANGLE's tutoring scheme is a 
version of the model tracing approach developed for these tutors. In model tracing 
students are tutored by matching their behavior against a cognitive model of 
successful and buggy performance in the domain. The most essential difference 
between ANGLE and GPT is that the cognitive model has changed: ANGLE traces 
students relative to the diagram configuration space, while GPT traces students 
relative to the execution space. 

Yet despite the general contributions of prior research, we basically started from 
scratch when it came to designing the specifics of the interface and of the tutoring 
strategies and messages. By taking the DC problem solving theory seriously as a 
driving force in tutor design, we arrived at a significantly different kind of interface and 
a different set of specific tutoring strategies and messages. 

2.1 MOTIVATIONS FOR TUTOR DESIGN: FROM DC TO ANGLE 

2.1.1 The Implicit Plan Problem 

One of the difficulties involved in building an intelligent tutoring system (ITS) is finding 
a way to communicate about the thinking that students do between their observable 
problem solving actions. We call this the "implicit plan" problem. If aspects of student 
planning cannot be reified or articulated by the ITS, it is not possible for the system to 
monitor this planning nor provide relevant advice. For example, in data collected from 
GPT, it was found that the better performing students were taking significantly more 
time at the beginning of each problem solving step. It appears they were doing some 
planning that cannot be represented in the GPT interface and thus, cannot be tutored 
by GPT. In contrast, the poorer students were more quickly jumping into a step 
indicating, perhaps, that they were not performing the kind of implicit planning that 
made the better students' successful. Because this implicit planning is not 
represented in GPT, the system cannot tutor it and thus, the poorer students are left on 
their own to discover it. 

In support of this interpretation, a common complaint about GPT is that it does not 
provide very good global feedback. The feedback focuses locally on the next proof 
step the student might take rather than more globaily at the next few steps or an overall 
plan. Many critics have the intuition that proof ideas can be born at a more global 
level. Our current research on geometry experts has identified this more global level 
and has characterized it in terms of DC's diagram configuration schemas. Thus, 
ANGLE can address the impliCit plan problem - we can reily the planning process in 
the interface and so, open it up for discussion and instruction. 

2.1.2 Reifying Planning: Advantages of a Diagram-Based Method 

ANGLE follows from the following instructional philosophy: If you discover a clever 
way to solve problems in a domain, you should tell it to students. There are two 



caveats. First, the method must be one that is "humanly tractable". For example, 
although the Simplex method for linear programming is a clever way to solve certain 
optimization problems, it is not tractable method for humans. Second, there must be 
an effective way of communicating the method that avoids being so complicated that 
students spend too much time trying to understand the method itself and too little time 
actually learning to solve problems in the domain. 

We can be reasonably certain that DC's problem solving method is humanly 
tractable because it appears to be the method skilled problem solvers are using. The 
next question is whether we can effectively communicate the method to students. 
Some ITS designers have addressed the problem of communicating about the 
abstract planning occurring above the level at which solution steps are executed. 
Examples of the resulting tutoring systems include Bridge (Bonar & Cunningham, 
1988), GIL (Reiser, et. aI., 1988), and Sherlock (Lesgold, et. aI., 1988). The basic 
approach is to develop a command language, usually menu-based and possibly 
graphical, which makes this planning level concrete. While such languages clearly 
provide a means for communicating about planning, they are at risk of violating the 
second caveat noted above. In other words, it is not always clear whether these 

, command languages payoff or whether they side-track the student with the extra 
burden of learning a complicated language. 

For the most part, we do not need to invent such a command language to reify DC's 
abstract problem space. Essentially, it already exists in the form of the problem 
diagram. Rather than choosing an operator from a list of geometry rules as in GPT, in 
ANGLE students select an operator from a list of diagram configuration icons. These 
icons are the building blocks for proofs in ANGLE just as geometry rules were the 
building blocks for proofs in GPT. 

2.1.3 A Methodology for Theory-Based Tutor Design 

In this chapter, we discuss the design of ANGLE and in particular, how its major 
components, the expert, interface, and tutoring component have been influenced by 
the model of problem solving laid out in Chapter 1. The expert component is 

sutljec:t-mlattler knowledge of the tutor, the interface component determines how the 
'l':flll'i"nl interacts with the system, and the tutoring component provides the verbal 

';ao'vlce the system gives the student. 

TABLE 2.1 
Ways to Communicate a Problem Solving Model in an ITS. 

Representations Processes 

Interface Notations Actions 

Vocabulary Hints and 
Explanations 

Tutor Advice 

2.1 summarizes a methodology for theory-based tutor design that indicates a 
to ~ranslate from a cognitive model of problem solving into design specifications 

Interface and tutoring components of an ITS. Given a model of successful 



students' implicit planning, one needs to find ways to communicate the knowledge 
representations and cognitive processes that make up this model. 

38 

The interface component provides an implicit form of instruction in that students can 
learn through their perception and interaction with it. Thus, one avenue to teaching 
the problem solving model is to invent interface notations and actions that reify the 
underlying representations and processes of the model. Interface notations should 
mirror the model representations such that students can begin to internalize these 
representations through repeated perception and use of the notations. Similarly, 
interface actions should mirror the model processes such that students can learn these 
processes through repeated performance of these actions. 

While the interface component provides an implicit form of instruction, the tutor 
component provides a direct way to instruct students on the representations and 
processes of the problem solving model. Both ANGLE's tutoring messages and the 
off-line text materials use specific vocabulary to directly articulate the schema 
representations used in DC. Similarly, the content and order of ANGLE's hints and 
explanations have been designed to articulate the problem solving processes (e.g., 
diagram parsing, abstract planning) incorporated by DC. 

The following three sections describe the three major components of ANGLE: the 
expert, interface, and tutor components. 

2.2 THE EXPERT COMPONENT 

2.2.1 Summary of DC: ANGLE's Expert Component 

The expert component is the core of an ITS as its capabilities constrain what can and 
cannot be done in the interface and tutor components. Essentially ANGLE's expert 
component is the computer simulation of DC described in Chapter 1. Some 
differences in implementation details are described in the following section. Here we 
simply summarize the important differences between DC and the expert component of 
the GPT. 

TABLE 2.2 
Differences Between GPT's and ANGLE's Expert Components 

GPT Expert 

ANGLE Expert 

K I d now e Ige 

Formal Rules 

Percepts & Concepts 

S trategy 

Local Heuristic Search 

Global Planning 

See Table 2.2. In GPTs expert component, the knowledge was organized around 
formal rules of geometry. These logical rules appeared as parts of production 

that also contained context cues to indicate likely situations in which the logical 
would be usefully applied. These productions constitute a bidirectional heuristic 

strategy that has a local view in that decisions are only made about next logical 
in the proof (either forward or backward). In contrast, ANGLE's expert component 

around geometric percepts and associated conceptual knowledge of the 
properties (part-statements) of these percepts. It searches a different problem 



39 

space that takes a more global view in that planning decisions are made that typically 
involve many steps in the proof. 

2.2.2 Efficiency Considerations 
This section provides some efficiency related details about how DC is used as the 
expert component of ANGLE. 

2.2.2.1 Off-line Problem Model Creation. The efficiency of ANGLE is improved by 
running DC off-line and producing a problem file for each problem ANGLE is going to 
tutor. ANGLE inputs the problem file just before the student begins working on a 
particular problem. 

It turns out that most of the computation necessary to model student problem 
solving (on a particular problem) can be done off-line. This can be accomplished 
because of the way diagram parsing and schema search can be decoupled: all of the 
diagram parsing is done off-line and only the schema search needs to be done on­
line. The result of the off-line diagram parsing is a problem file containing a network of 
part-statements and schemas. Such a network is illustrated in Figure 1.5. As 
discussed in Section 1.3.2.1, this network is a concrete model of the problem space of 
a particular problem - no more pattern matching of predicates need be done to find 
solutions to this problem (or to follow any legal path for that matter). We'll refer to the 
network for a particular problem as the problem model. Only constant to constant 
matching is necessary for ANGLE to check students' solution steps. This approach 
allows for fast responses to the student actions « 1 sec) and is a significant efficiency 
improvement over GPT as argued below. 

There is no loss in generality as a result of this efficiency improvement. ANGLE 
can still follow the student along any path of legal inferences whether or not they are 
needed to prove the problem goal. 

While the generation of the problem model is done off-line, ANGLE must still do 
some problem solving search when asked to generate strategic advice. This advice is 

.nl'lf.m when the student is stuck and is designed to hint at a good next step the student 
take. In the Tutor Component section we describe the nature of the strategic 

.ad'vice given. The Expert Component's role is to identify the best next step the student 
take within the context of what he or she has already done. ANGLE suggests 

forward reasoning steps. It determines the best next step by finding a schema 
'.wt,il"h meets to criteria. First, it must be a schema that the student could currently 
orc)ve using any of the statements he's already proven or any of the part-statements 
~wtlich are consequences of the schemas he's already proven. Second, it must be the 

of the) schema(s) that is on the closest path to the goal. The Expert does a 
\ba~lard breadth-first search through the problem model to find this schema. As 
('liclted at)ove this can be done quite quickly, about 1 second. This is both because 

Rrclblem models are relatively small and because no pattern matching is necessary to 
gQA,,..,h them . 

........ We decided to tutor only forward inferences and not backward ones. This deciSion 
. based on classroom experience with an earlier version of GPT which provided 

reasoning hints under certain circumstances. The average student found 
.... very confusing and such hints were eliminated from the tutor so that the current 

of GPT only tutors forward inferences. This issue is certainly worth more 
~oraltion but we wanted to avoid this potential roadblock with this first instantiation 



of ANGLE. (In fact, a new tutoring scheme for ANGLE is currently in the works which 
tutors backward reasoning.) 

40 

2.2.2.2 Evaluating Efficiency Improvements. Identilying which of the possible solutions 
the student is wo~ing on is somewhat problematic for GPT. ANGLE finesses this 
issue by being able to quickly generate potential solution paths on-line. Instead of 
trying to match a complex set of student steps against a series of possible solutions, 
ANGLE simply finds the shortest path to the goal from the steps the student has 
already glilnerated. It gives advice on the next step in this path. 

The Macll hardware is about 3 times faster running Common LISP than the Xerox 
D-machine running its Inferlisp. However, the efficiency of ANGLE's problem model 
makes it even faster. Average problem loading time for GPT is about 35 seconds for 
"easy' problems and about 130 seconds for "hard" problems. In contrast, ANGLE 
doesn't suffer so much on the hard problems: about 10 seconds for the "easy' 
problems (about the expected 3 times faster), but only about 13 seconds for the "hard" 
problems -- a ten-fold gain largely attributable to the concrete problem model. GPT 
response times are about 15 seconds while ANGLE's are about 1 second. Again, a 
gain well beyond the hardware difference. 

2.3 THE INTERFACE COMPONENT 

2.3.1 Motivation for Interface Component Design 

An obvious design principle for a tutor interface is that it should be easy to use and 
learn. A less obvious principle has to do with the role of interface as a subtle, yet ever­
present, form of instruction. This implicit instruction comes both in the form of the 
notations used in the computer interface and also in the actions allowed by the 
interface. A theory-based approach to tutor design can guide the creation of these 
interface notations and actions. Notations should be created which mirror the 

. important underlying representations of the problem solving model, while actions 
should be created which mirror the important underlying processes of the problem 
solVing model. In this way, students can begin to internalize both the desired 

.. ' representations as they use the interface notations and the desired processes as they 
. perform interface actions. 

2.3.1.1 ANGLE Interface Notations. The ANGLE interface includes a number of 
.···:~~:~~~tOf notations which reily representations in the DC model. The most 
"1 and are icons for representing the generic schema categories 

for student-selected instances of these schemas (these are 
.~::;';;us:~ea below in 2.3.2 and illustrated, for example, in Figures 2.1 and 2.3). 

icons provide a concrete image to which students can attach the related 
conceptual knowledge about the part-statements and ways-to-prove. In particular, 

reinforce the perceptual character of schemas. 

Following GPT, ANGLE incorporates a graph representation of proofs in contrast to 
twO-column format of traditional geometry instruction. (The construction of a proof 

is described below In Section 2.3.3 and illustrated in Figures 2.3 through 2.12.) 
proof graph notation reifies the search process: 

1) by explicitly indicating how a correct solution must be a chain of steps 
linking the givens to the goal, 



2) by allowing the posting of subgoals as possible future links in the 
solution chain, and 

3) by explicitly indicating dead end solution attempts which are a 
common.part of problem solving (even for experts). 

41 

Following a conventional notation used on paper, ANGLE uses hash marks in the 
diagram to indicate part-statements that have been proven. (This is described below 
in Section 2.3.2.1, see, for example, the change in the diagram from Figure 2.5 to 2.6.) 
These markings reify the equivalence class nature of segment and angle congruence 
in contrast to the binary relationships of the formal notation. In other words, to indicate 
that 3 angles are all congruent to each other using the hash mark notation, one can 
mark all three with the same marking - the marking serves as a token of the 
equivalence class containing all three angles. In contrast, the formal notation requires 
three binary statements to represent this situation, for example, Ll = L2, L2 = L3, 
andL1 =L3,. 

Finally, as a further aid to the acquisition of schemas, ANGLE highlights a schema 
within the problem diagram whenever the mouse passes over the corresponding 
schema instance icon in the proof graph. This is intended to reinforce the relationship 
between the schema and the rest of the diagram. This is a kind of dynamic notation 
which cannot be feasibly employed with paper and pencil. 

2.3.1.2 ANGLE Interface Actions. The DC theory influenced interlace decisions 
involving both the type of actions allowed and the grain size of these actions. 
Following the major processes in DC, ANGLE interlace actions are broken down into 
(1) diagram parsing actions, (2) planning actions, and (3) execution actions. The grain 
size of parsing and planning actions is designed to emphasize schemas, while the 
focus on statements and rules is left for execution actions. 

The diagram parsing actions are those done in order to post schemas. As 
described below (Section 2.3.3.1), first the student selects a schema type and then 
indicates the lines within the diagram that make up an instance of this schema (see 
Figure 2.2). This particular way of constructing a statement, as opposed to the way a 
student constructs one in GPT or on paper, is meant to reinforce the relationship 
between the schema instance and the problem diagram in which it is embedded. 

The planning actions are those done in order to justify schemas and part­
statements. To some extent these actions are more elaborate than those made in a 
two-column proof on paper: In ANGLE, the student must explicitly indicate the 
premises that lead to a conclusion (that is, by drawing the lines between them), while 
in the typical two column proof these links are only implicit. On the other hand, the 
planning actions are for the most part less elaborate than those required for a two 
column proof. Certain details required in a two column proof can be left out while 
"~~~:~~;i~~ a plan. Students can omit a) certain statements usually required in a 
'( proof, for example, the reflexive statement fR' = CK in the first inference in 
nUl" ... 2.7, and b) the rules or "reasons' that usually appear in the right column of a 
!\Vo--collJmn proof. 

, Any tutor interlace (or notational scheme for that matter) is implicitly taking an 
ll~IrUctlon.al stance about what things are hard and/or important to learn and what 

are not. Three important aspects of the instructional stance taken by ANGLE's 
lfQrf .. "., are worth maki ng explicit: (1) learning about the logical linkages betwee n 

steps is hard and important, (2) learning the details of proof execution is less 



42 

important and perhaps less hard than learning proof planning, and (3) learning how to 
parse geometry diagrams into particular chunks (DC-schemas) is hard but it is 
important for successful search in a vast problem space. The first point is shared by 
GPT's interface, byt not by the two-column notation used on paper. The last two pOints 
are special to ANGLE's interface. 

The following SUb-sections provide more details on the nature of the ANGLE 
interface. 

c 

I 

Figure 2.1. The ANGLE interface at the stan of a problem. 

",,~"~'''' Screen Layout 
'",nll'" 2.1 shows the ANGLE screen at the start of a problem. On the upper-left edge 

window is an icon-menu containing icons used to indicate various schema types 
as segment and angle congruence statements (the bottom two). The menu 

it is the mode-menu where the current mode is always highlighted. The Move 
is the default mode as shown in Figure 2.1. The problem givens appear at the 
of the window, the problem goal at the top, and the problem diagram at the top­

Just like in GPT, the proof is represented as a graph linking the problem givens to 
prOOllem goal. Figure 2.7 shows a complete proof plan, while Figure 2.12 shows 

~oJmll)lel:e solution after execution. 



43 

The elements of the proof graph include two types of statements: 1) schema 
instances, displayed with both the schema's whole-statement and a miniature picture 
of how the schema instance appears in the problem diagram, and 2) part-statements, 
displayed in the standard way. 

c 

Figure 2.2. Selection of a schema statement or "concept" as they 
were called to students. This method of schema selection is intended to 
reify the diagram parsing process. 

Interface Actions 
1 Planning Actions. Students enter planning steps in two sub-steps, statements 
be posted first and then can be justified. To post a schema statement, the student 
by selecting a schema type from the icon-menu on the left. Next, she mouse-
on lines in the problem diagram that make up a particular instance of this 

OhelmA These lines are highlighted as shown in Figure 2.2. The figure shows the 
lectinn of an instance of the CONGRUENT-TRIANGLES-SHARED-SIDE schema - this 
irtiCIJlar instance is the first step along the solution path. After the student mouse-

on "Concept Finished", the schema statement is posted - that is, it appears on 
The student is then free to drag the statement (using the mouse) into the 



44 

The student is free to post other statements as they wish. Typically, she will attempt 
to justify the statement just posted. To justify a statement, the student starts by mouse­
clicking on Just ify in the mode-menu. Next, she mouse-clicks the statement she 
wants to justify, in this case .6.ACK :: .6.BCK. This statement is highlighted and the 
mode-menu switches to Select Reasons, and a "Done-Abort" menu appears below 
the problem diagram. The new state is shown in Figure 2.3. 

c 

I 

Figure 2.3. Justifying a schema statement. The student is indicating 
the intention 10 justify .6.ACK :: .6.BCK. Next, she will select the given 
statements as the reasons for this statement 

The student now mouse-clicks on the reasons or statements from which .6.ACK :: 
.. alCl( is justified. In this case, the student mouse-clicks on the two givens, AC :: BC 

Ai( :: BK. As she does, lines are drawn from these statements to .6.ACK :: .6.BCK. 
finish selecting reasons, she mouse-clicks on "Done Selecting Reasons" in the 

below the problem diagram. The result is shown in Figure 2.4. The mode 
Witches back to Move and the student is free move any piece of the proof graph 

created. 



c OOAl.: DLIIZ 

A 

A 
• 

Figure 2.4. Completion of a schema justification action. 

Posting a part-statement, for example, .o!BCD = .o!DCA, is analogous to posting a 
schema statement. First. the student mouse-clicks on the angle congruence icon in 

. the icon-menu (second from the bottom). Then, she mouse-clicks near the vertex of 

45 

of the angles between the two rays that form it, that is, right where one would mark 
angle with a pencil on paper. She does the same for the other angle. At this pOint. 
screen appears as shown in Figure 2.5. 



A 
I 

Figure 2.5. Creating an angle congruence statement. Note that the 
angles are temporarily highlighted as they are selected - see the 
markings at vertex C in the diagram. 

46 

To finish posting ~BCD:: ~DCA, the student selects ·Statement Finished" from the 
manu below the diagram. Now the statement can be dragged into the proof area and 

[justified. Justifying part-statements is exactly the same as justifying schema 
The student selects Justify from the mode-menu and mouse-clicks on 

:; ~DCA. This statement is highlighted, the mode switches to Select Reasons, 
the "Done-Abort" menu appears. The student mouse-clicks on AACK :; ABCK as 
reason and selects "Done Selecting Reasons". The result is shown in Figure 2.6. 

,Notir.A that as a result of proving ~BCD :: ~DCA, these angles are marked congruent in 
problem diagram using the conventional hash marks used on paper. 



A 
I 

Figure 2.6. Justification of a part-statement. Notice that these angles 
are marked in the diagram. 

. Figure 2.7 shows the completion of the proof plan after the addition of schema 
statement 4lt.ACD = 4lt.BCD and part-statement LADC = LBDC. 

47 



48 

c 

IJ 

Figure 2.7. A complete proof plan. 

2.3.3.2 Execution Actions. At this point it is the task of the student to execute or fill in 
, the details of her proof. Proof execution involves adding any statements that were left 

out and adding rules to justify the links between statements. To start with a simple and 
typical example, I'll illustrate the execution of the second planning step, that is, 

.a.ACK;: .a.BCK to "BCD;: "DCA, and then retum to the more involved execution 
the first planning step. 

Executing the planning step from .a.ACK ;: .a.BCK to "BCD;: "DCA simply involves 
acrdi~lg the geometry rule that justifies this inference. This rule is "corresponding parts 

congruent triangles are congruent" which we abbreviate CORRES-PARTS. First the 
, .. "UJUI;j1rll needs to create this rule using the "Rules" icon in the icon-menu. Figure 2.8 

snCiWS the resutl of clicking on this icon - a list of rules appears. 



c 

I 

Figure 2.8. The rule menu is shown on the left. This menu is used 
during execution to add rules to justify the links in the proof. 

49 

Mouse-clicking on CORRES-PARTS causes this rule to appear on the screen. Then 
the student drags the rule on top of the line connecting .AACIe :: .ABCIe to ":::BCD :: 
":::DCA. See Figure 2.9. 



c 

A 

I 

Figure 2.9. A rule is inserted fU'st by placing it over the line in which 
it is to be inserted. 

To insert this rule, the student mouse-clicks on Insert in the mode-menu, then 
mouse'-cfi,cks on the rule, and lastly mouse-clicks on "Done Inserting" in the menu 

.!lnri.,,,,,.,Q.t!> the diagram. The rule is inserted by taking the line(s) going into the 
toomost statement, "'BCD e "'DCA, and having it (them) go into the rule, and then 
adclino a line from the rule to the topmost statement. 

50 

To execute the first planning inference, that is, the one from AE:: BC and AK :: BK to 
'AliCK e ABCK, the student must add a new statement - the reflexive statement CK :: 

This statement is created, just as statements are during planning, and placed 
underneath AACK e ABCK. Now, rules must be added. Creating the 

KEFLEli:IVI' rule from the the "Aules· menu, the student drags this rule underneath CK:: 
Using Justify in the mode-menu, the student creates a link from REFLEXIVE to CK 

The result is shown in Figure 2.10. 



Figure 2.10. Adding and executing the reflexive statement CK = CK 
in service of executing A.ACK :; A.BCK. 

51 

. To complete the execution of this planning inference, the student adds the sss rule 
and drags it on top of either of the two lines going into A.ACK :; A.BCK. She mouse­
clicks on Insert and then on sss. Figure 2.11 shows this state. 



c: 

rum 

Figure 2.11. Inserting a triangle congruence rule - just before adding 
the extra premise CK!! CK. 

52 

Now, before clicking on "Done Selecting Reasons", the student mouse-clicks on CK 
:5 CK to add it as the third premise of sss. After completing this and executing the 

. remaining planning inferences, the final proof is done as shown in Figure 2.12. 



c 

I 

Figure 2.12. The final solution in the execution space. 

2.4 THE TUTOR COMPONENT 

Motivation for Tutor Component Design 

the interface component was designed to reily model representations with 
intArfl'lr~A notations and reily model processes with interface actions, the tutor 
eOlnpClOent was designed to articulate model representations with the vocabulary 

by the tutor and articulate model processes with the explanations given by the 

53 

1.1 Articulating Model Representations. Schemas were explicitly presented to 
c.stulClents in the format shown in Figure 1.3. We decided to call schemas "concepts" as 

word is much more familiar to most students. In addition to talking about 
:corlcel~ts", the vocabulary of the schema slot-names, ·configuration", "part-statement", 

"ways-to-prove" are an explicit part of both the tutor advice and the supplementary 
materials. 

content of the feedback ANGLE gives when students make logical errors was 
deSigned to help students learn the schema representation. This logicel error 

~b:ackfirst enforces the constraint (1) that only part-statements of a schema can be 
to prove it. When this constraint has been satisfied the tutor then checks (2) that 



54 

the part-statements the student selected match one of the ways-to-prove. In this way, 
students may learn that when trying to prove a schema, they need not consider any 
statements besides the part-statements of that schema. Violations of these constraints 
are called a wrong-type error for (1) and either a too-few or too-many error for (2). 
These error categories and the corresponding feedback messages are described in 
more detail below (Section 2.4.3.2). 

2.4.1.2 Articulating Model Processes. One straight-forward way of communicating 
model processes is through the content of the hints the tutor provides. ANGLE's hints 
for pasting a particular schema explicitly direct the student toward diagram parsing (a 
key process In the cognitive model). The hint to past a CONGRUENT-TRIANGLES schema, 
for example, encourages careful diagram parsing by asking students to count the 
triangles in the diagram. 

Besides the content of hints, a less obvious way of communicating model 
processes is through the order in which hints are given. In other words, the order in 
which hints about appropriate problem solving steps are given should correspond with 
the order of these steps in the cognitive model. Following through on this design 
guideline results in one of the biggest differences between ANGLE and the first 
generation GPT. 

Consider the situation in Figure 2.13. If a student were to ask for help from GPT at 
this paint, it would focus on using the corresponding-parts rule to make the inference 
from .BCD = • YZW. The message would be something like "Notice twa triangles 
which are congruent. Think about what this tells you." This is not necessarily a bad 
hint. But, it lacks a strategic context that might help the student decide which of the six 
corresponding parts it might be useful to prove. We've observed students blindly 
fallowing this advice, proving nan-essential parts congruent (e.g., LCBO iii LZYw), 
getting the advice again, proving another set of nan-essential parts congruent (e.g., 
LCDB = LZWY), and so on. Eventually, they stumble upon the right corresponding 
parts, in this problem bath DC = wz and LOCi\. = LWZX are useful, and only then will 
GPT start giving advice towards proving ."co = .XZW. 



I QV~S L~~I 
Figure 2.13. The context for a strategic hint. The next hint will 
focus on the selection of the .... co :: .XZW schema and only then, 
will the hints focus on part-statements that follow from .BCO :; 
• YZW. These hints suggest to select those part-statements which will 
help to prove .... Co :: .XZW. 

55 

ANGLE approaches this situation in more or less the opposite direction, that is, 
.... CD :; .XZW to the part-statements De":: WI and ",::oc", :: ".::wzx. If the student 

rie~9ds help, ANGLE would first provide schema selection hints (described in Section 
) to encourage her to look in the diagram for triangles that she might prove 

(,COlnnr. The student is advised toward posting .... Co:: .XZW as an island 
See Figure 2.14. 

Next, she should work on finding part-statements which she can prove from .BCO 
and which are relevant to this goal. If she has trouble, ANGLE provides part­

stal~ementjustification hints (described in Section 2.4.4.3). For example, the most 
such hint would suggest in this situation: "Look for OVERLAPPING concepts. 

is, look for a part-statement which appears both in .... Co :: .xzw and in a 
'~AA_. you've already proven.". 



IJ 
G1Ve.lS: 

Figure 2.14. The needed part-statements have been added. The next 
hint will focus on justifying AACD :: AXZ'" using the proven part­
statements. 

56 

~I""r" 2.14 shows the addition of the necessary part-statements. If the student has 
trc)ublt'l here, ANGLE would provide a schema justification hint (described in Section 
.C:.'~.4.;~1 that would work her toward finding the appropriate premises (DC;: WZ, "::OCA :: 
.,~.", and the given ACi X2") with which to justify AACD:: AXZ"'. 

",41:"'1.2 Tutor Description 

,J\I\!lill-'<:: tutor component provides two types of advice: 1) feedback on student's 
iloOlical errors, and 2) strategic hints for what to do next in the case the student is stuck 

appears to be floundering. The tutor component calls upon the expert to provide 
basic information from which to generate advice. To help generate feedback, the 

is used to check the correctness of student actions. If the action is incorrect, the 
is categorized and the tutor gives feedback with respect to the error category. To 
generate hints, the expert is used to find a good next-step that the student could 
in the context of their current solution. The tutor provides advice by hinting at this 

a particular context, the advice always starts out general, so as to maximize 
-~.~,.:, .. ..: involvement of the student, and becomes increasingly more specific if the 

continues to make errors within this context. If the student makes enough 



57 

errors, at some point the advice bottoms-out by telling the student what they should do 
next. 

Different feedback and hints are required for the three major kinds of action in 
ANGLE: statement selection (diagram parsing), statement justification, and execution-
justification. . 

2.4.3 logical Feedback 

2.4.3.1 Feedback for Statement Selection. As mentioned above, feedback is 
generated in response to student errors. A statement selection action is in error if the 
statement is clearly not a consequence of the problem givens. Given a properly drawn 
diagram, that is, one in which the problem givens are true, a student can tell whether a 
statement is plausible Just as DC does by seeing if it looks true in the problem 
diagram. If a student selects a part-statement which is implausible, for example, ",GAl( 
:: ",ICAD in the problem in Figure 2.12 above, the tutor provides feedback: "If the 
diagram is drawn accurately, angles which don't look equal cannot be proven equal." 

When a student selects a schema-statement, it is checked for types of errors. The 
more serious error is the selection of a schema-type which does not appear in the 
diagram. In this case. ANGLE responds "This concept does not appear in the 
diagram: A less serious error occurs when the student selects a schema-type which 
appears in the diagram, but the lines he picks does not constitute an instance of this 
schema. The tutor responds to this error with "The lines you picked do not form this 
concept", 

Occasionally a student might select lines which are instance of a schema other 
than the schema he selected. ANGLE does not currently recognize such a bug. but it 
might be useful if it did, so that the tutor could give more reasonable feedback, e.g., "It 
looks like you are trying to make AACIC;: ABCIC. Since these triangles share a side, 
you should select the CONGRUENT-TRIANGLE-SHARED-SIDE concept. not the CONGRUENT­
TRIANGLE concept: 

2.4.3.2 Feedback for Statement Plan..Justification. Consider problem 7 shown in 
Agures 2.1 through 2.12 above. Imagine a student selected AACD :: ABCD first and 
tried to justify it with the two givens. This is clearly wrong since AA:: BK are not 
corresponding parts of these triangles. The tutor responds first with a generic 

. message, "The premises you chose are not a legal justification of this concept. Review 
. the TRIANGLE CONGRUENCE SHARED SIDE concept". If the student were to make this error 

second time the tutor would respond with more specific feedback about the error: 
premise AIC ;: iiK is not a part-statement of the concept you are trying to prove", 

This example illustrates the two levels of logical feedback. The generic feedback 
.meSS€lge always appears in response to the first logical error a student makes when 
iatltem,Dlir1n to justifying a particular statement. The response to the second and 
",UI]seqwam logical errors depends on the type of the error. Logical errors are 
:!ite!Jorized into three types, ordered in terms of severity: 1) wrong-type: one of the 
Iren~i!l4:'" is of the wrong type. e.g., not a part-statement of the schema being justified. 

too-few. all the premises are of the right type, but there are not enough of them to 
a way-to-prove, and 3) too-many: they're the right type and there's enough. but 

are extra unnecessary ones as well. The tutor generates a message to address 
most severe error the student has made. The example above was a wrong-type 

message. Too-few feedback says "The statements you selected are part-



58 

statements of <a schema statement> but they do not match any of the ways-to-prove", 
while too-many feedback says "You chose more premises than you need. 

2.4.3.3 Feedback for Execution-Justification. This feedback is quite simple in this 
version of ANGLE. When a student makes an error in attempting to add a rule, the 
tutor responds by indicating the what type of statements the premises should be. For 
example, if a student makes a mistake on a triangle rule, the tutor responds "The 
premises of <a triangle rule, like SAS> should be 3 segment or angle congruence 
statements which are corresponding parts of congruent triangles." 

2.4.3.4 Miscellaneous Feedback Situations. It is possible to create a loop in ANGLE's 
proof graph by Indirectly using a statement to justify itself. ANGLE detects this and 
responds "You are trying to use <some statement> to prove itself. That line of 
reasoning Is circular: 

Other special case message situations include (1) trying to justify a given and (2) 
trying to use the goal as a premise. In the former case, the tutor responds "It doesn't 
make sense to justify a given. Givens are already proven by definition." In the latter 
case, "It doesn't make sense to use the goal as a reason. The goal is what you're try to 
prove: 

2.4.4 Strategic Hints 

Strategic hints are given under two circumstances. Either because students request a 
hint using the Info menu at the top of the screen or because they appear to be 
floundering. In a similar fashion to the Geometry Proof Tutor, students are judged to 
be foundering if they commit three logical errors within a particular hinting context. (In 
GPT, strategic hints start sooner - after two logical errors.) Each hinting context starts 
either at the beginning of the problem or after a successful justification action. 

The first time a student gets a hint within a hinting context, either because he's 
requested one or because he's made three logical errors, it is the most general hint 
associated the with a good next move as determined by the expert component (as 
(jescribed above). Until the student successfully justifies some statement and as long 

. as they continue to make more logical errors or request hints, they will get ever more 
specific hints which bottom-out by telling the student what he should do. We call this 
last type of hint a bottom-out hint. Typically, there are only one or two less general 
hints between the most general hint and the bottom-out hint. Thus, if the student is not 
asking for help it will take three logical errors before they get their first general hint and 
two or three more errors before they get the bottom-oul hint - a total of five to six errors. 
A1tematively, they will get the bottom-out hint If they are not making errors but request 
a hint three or four times within a hinting context. 

Planning hints are associated with schemas and are retrieved from the particular 
s.ctlerrla that the expert suggests as a good next move. The most general schema 

are applicable to all or most schema classes, while the more specific hints may 
only associated with a particular schema. Planning hints for a particular schema 

are selected from one of three categories depending on the situation: (1) a 
SchE!ma selection hint is given if the student has not yet posted this schema statement, 

a schema justification hint is given if the schema has been posted and the part­
necessary to prove it have been posted and proven. or (3) a part-statement 

WfI()atic)n hint is given if the schema has been posted but the part-statements 
~S1:;alYto prove it either have not been posted or have not been proven. 



(Examples of these hint categories are given below.) Recall that because of the way 
the suggested next schema is generated, in case (3) the needed part-statements will 
be necessarily provable from already proven schemas. 

Planning hints.are given until planning is complete. Then execution hints are 
given. In other words, the cognitive model suggests that a complete plan should be 
found before potentially wasting time executing something that will not contribute to 
the final proof. 

59 

2.4.4.1 Hints for Schema Selection. The most general schema selection hint, "Look in 
the diagram and see if you can find something that looks like one of the concepts 
you've learned", appears for any schema except the triangle-related schemas. In the 
case of triangle schemas, the general statement selection hint is "Sometimes triangle 
concepts are hard too see. If you can't find all <N> triangles in this diagram, you may 
not have noticed some that are useful." where N is the number of triangles in the 
diagram. This hint is intended to encourage students to more carefully parse the 
problem diagram in situations where they are apparently not seeing an appropriate 
triangle congruence inference. The more specific hints essentially indicate the type of 
schema the student should be looking for, for example. "Find lines in the diagram 
which look perpendicular. Try to prove that they are: The schema selection bottom­
out hint tells them which particular instance to pick, for example, "Pick the CONGRUENT 
TRIANGLES SHARED SIDE concept and indicate AACD and ABCD in the diagram." 

2.4.4.2 Hints for Schema Justification. The most general schema justification hint 
attempts to focus students on looking for any proven part-statements of the schema 
they are trying to prove. "Find proven part-statements of <the desired schema> and 
use them to justify it: Essentially, this is a generalization of the indirect subgoaling 
that Greeno identified (see Section 1.5.4.2) in that it applies to any schema not just 
triangle congruence schemas. The bottom-out hint is "Justify <the desired schema> 
using statements: <the necessary statements>: 

2.4.4.3 Hints for Part-Statement Justification. Schema justification hints are given 
when the expert's suggested schema can be proven directly with part-statements that 
are already posted and proven in the proof graph, In the case that one of these part­
statements has not been proven or posted, a part-statement justification hint is given. 
The most general hint is "Look for OVERIJI.PPING concepts. That is, look for a part­
statement which appears both in <desired schema> and in a concept you've already 

.pr'Ovein,". The less-general hint points out which part-statement this is and the bottom­
out hint explicitly states how it should be proven: "Justify <needed part-statement> 
using concept <already proven schema>." 

•. 2.4.4.4 Hints for Execution-Justification. The execution hinting scheme is quite simple 
in this version of ANGLE. The most general hint, makes sure the student knows he is 
eXEicuting and no longer planning: "Add rules to indicate the reason for each statement 

concept. All concepts and statements, except the givens, should have thick lines 
to them", The bottom-out hint is 'Prove <statement> using the <rule> rule: 

2.5 WHAT'S ON THE HORIZON FOR ANGLE? 

have two good milestones of tutoring success to which ANGLE can be compared, 
first is GPT which, in a field test in a Pittsburgh high school, led to about one grade 
or one standard deviation improvement in students who had the tutor in their 



classroom over students in a normal classroom. The second milestone is a generic 
one for all computer tutors. Bloom (1984) showed that human tutors can improve 
student performance by about 2 standard deviations over students in a normal 
classroom. 

60 

Why might ANGLE be better than GPT? We can think of a tutor as a model of 
problem solving which students can emulate. To the extent that the tutor's problem 
solving method is a good one and students successfully emulate it, then they will be 
good problem solvers as well. Because DC is a more powerful method than the one in 
the previous tutor, we believe that students who successfully emulate it will be even 
better problem solvers than those who successfully emulated the problem solving 
method taught by GPT. ' 

Besides being a more powerful problem solving method than one that focuses on 
single steps, our basic research suggests that the DC method may be easier to learn. 
Koedinger and Anderson (1989) argue that DC-schema's are not learned, in any 
direct way, from the formal rules of the domain - what we call the execution space. 
Instead, they appear to be learned by identifying useful categories of domain objects 
(i.e., the configuration) and learning their properties (i.e., the part-statements and 
ways-to-prove). These categories carry the load of recognition: indicating when 
particular knowledge should be brought to bear and having the effect of drastically 
reducing the search space. The properties carry the load of inferencing - indicating 
what can be concluded (part-statements) and under what conditions (ways-to-prove). 

We believe this type of learning, that is, abstraction from domain objects, is a more 
natural extension of students' prior knowledge. Thus, contrary to the concern that DC 
represents an expert method that will be too difficult for students to understand, we 
believe the DC method may be easier to learn. The instruction in GPT is focussed on 
the formal rules of geometry which are totally new and unfamiliar to students. In 
contrast, the focus of instruction in ANGLE would be on diagram configurations and 
their properties. Pre-geometry students already have some prior perceptual intuitions 
about geometric figures. Diagram configuration schemas can be taught by building off 
this familiar ground. 



61 

CHAPTER 3. 
INITIAL EVALUATION OF ANGLE 

3.1 INTRODUCTION 

This chapter reports on our first empirical study of ANGLE. The central goal is to test 
the hypothesis that the development of more accurate and powerful cognitive models 
of problem solving can lead to major improvements in the instruction of problem 
solving, particularly within, the context of intelligent tutoring systems. In this study, we 
compared GPT and ANGLE - two tutors for the same domain whose primary 
difference is the cognitive model that underlies them. While the cognitive model 
underlying GPT is a reasonably good one, it has some flaws. It does not do a good job 
capturing the more strategic abilities of effective problem solvers. The DC model 
improves on GPT's model by providing a sound explanation of these abilities. The 
question is: can this improvement lead to more effective instruction? 

In addition to this big goal, this study allows us to (1) check the feasibility of 
teaching proof planning separate from execution, (2) gather further data on the roles of 
conceptual, perceptual. and formal rule knowledge in a formal reasoning domain, and 
(3) gather data with which to tune ANGLE's interface and tutor messages. 

ANGLE is still in an eany development stage. In particular, the current 
implementation of the feedback scheme and the wording of the feedback messages 
are only a reasonable first pass attempt. It takes iterations of usage and redesign to 
get a good sense for how to make them most effective. As mentioned in Chapter 2, 
ANGLE represents about 1.5 person-years of effort. This study was its first extensive 

. ". trial. In contrast, GPT represents about 10 person-years of effort and has been through 
at least 2 major iterations of study and redesign. 

3.2 METHOD 

3.2.1 Subjects 

subjeqt5 in this study were high school students recruited from the Pittsburgh 
School district. To reduce the amount of declarative instruction in geometry and 

on proof problem solving, we required these students to have just completed a 
school geometry course. 30 students participated for pay: $54 total for 

cornnl.etirlO the experiment. Subjects were told they would receive $2 per hour plus a 
con~pli~tioln bonus of $20 and a performance bonus of $10. The performance bonus 

intelndEld to encourage subjects to take the task seriously. All subjects were 
. """iUliIIY paid the whole amount. 

Materials 

The following materials were used in this study. The handouts and tests appear in 
,DDI~ncii" A. 



Handouts: Rule Summary Sheet, Tracking Sheet, Concept Summary Sheet 
(ANGLE group only), ANGLE Text (ANGLE group only), GPT Text 
(GPT group only). 

Tests: Proof Construction A, Hidden Figures A, Truth Judgment A, Proof 
Checking A, Proof Construction B, Hidden Figures B, Truth 
Judgment B, and Proof Checking B. 

Tutors: ANGLE written in Macintosh Allegro Common LISP running on a 
Mac llci. GPT written INTERLlSP-D running on a Xerox 1109. 

3.2.3 Design 

62 

The design of the study is straight-forward. Half the subjects used ANGLE while the 
other half used the Geometry Proof Tutor (GPT). There were two versions of each test, 
the A version and the B version, designed to be equally difficult. Half the subjects in 
each group took the A version tests as pre-tests and the B versions as post-tests, while 
the other half did the opposite: 8 versions as pre-tests and A versions as post-tests. 

Here is the design, with number of subjects in each cell: 

3.2.4 Procedure 

Order: 

Tutor: A->B B->A 

ANGLE 

GPT 

8 

7 

15 

7 

8 

15 

15 

15 

30 

. Subjects participated in six two-hour sessions over the period of two weeks. The first 
• session was devoted to pre-testing and if time permitted, an introduction to the one of 

two tutors depending on which condition the subject was in. During the next four 
the subject would work on the tutor until they had spend eight full hours. On the 

day, subjects would take the post-test. 

PRE-TESTING ==> 8 HRS OF TUTORING => POST-TESTING 

During both the pre-test and post-test, subjects were given the Rule Summary 
for the Proof Construction and Proof Checking tests. For the proof construction 

they were told that their proofs must not contain any geometry rules other than the 
appearing on the Rule Summary Sheet. They were given 35 minutes for the 
Construction test, 6 minutes for each of the two parts of the Hidden Figures test, 

for each of the Truth Judgment and Proof Checking tests. The eight test 
HU\l!UlS appear in Appendix A. 



63 

3.2.5 Motivation for Tests 
The Proof Construction test was the main dependent measure. We wanted to know 
how the tutors effected the acquisition of proof construction skill. The other tests were 
used to try to capture sUb-components of proof construction skill. 

The Hidden Figures test is a vanation of the Embedded Figures Test (Witkin et. aI., 
1971). The test involves finding one of set of figures within a complicated line drawing. 
This type of perceptual disembedding is similar to the kind of disembedding geometry 
problem solvers have to do, for example, to find two congruent tnangles in a 

· complicated geometry diagram. 
The Truth Judgment and Proof Checking tests were an attempt to decouple the 

planning and execution portions of geometry proof skill. The Truth Judgment test was 
designed to capture planning skill, but not require execution. Here's an example 
problem: 

9a. If ~TQU = ~RQU and ~QTU = ~QRU, 
must ~STU = ~SRU? 

Q 

T~-r--7R 

YES 

CAN'T 
TELL 

The student was asked to circle either YES or CAN'T TELL. One way to approach 
these problems is to attempt to construct a proof plan of the conclusion: ~STU = ~SRU 
in the example above. If a plan is found, the answer is YES. Note, it is not necessary to 
fill in the details of this plan in order to correctly answer these problems - thus, 
execution skills are not required. 

A second motivation for the Truth Judgment test was an attempt to identify biases in 
· geometric reasoning in the spirit of the biases which have been found in syllogistic 

•.. reasoning (Johnson-Laird, 1983). In particular, the test included four types of 
· varying on whether the correct answer was YES or CAN'T TELL and whether 

problem diagram was "good", meaning the givens and goal of the problem looked 
or "bad", meaning the givens and goal did not look true: 

Diagram: 
AOsw!il[ Good Bad 

YES a b 

CAN'T 
d TELL c 

Problem types band d differed from matched items a and c only in that the diagram 
distorted. Problem types c and d had the same diagram as a and b, but the pOint 

were different and the problem givens and goal were different. Problems 1 a, 
.. 2b, 2c, etc., appeared on Truth Judgment test A. while problems 1 b, 1 c, 2a, 2d, etc., 
)peSlred on Truth Judgment test B. 



64 

In contrast to the Truth Judgment test. the Proof Checking test focuses on execution 
skills but does not require planning skills. The problems contain two-column proof 
solutions with errors in them. The task for the student is to identify the errors. rhese 
solutions are ess~ntia"y correct - they contain all the elements of a complete proof 
plan. However. they contain two types of execution errors: 1) skipped execution steps 
or 2) a correct step justified with the wrong .rule. 

3.2.6 Tutoring Details: Slowing Down ANGLE 

In both groups students worked with a computer tutor for 8 hours. Each student read 
through their respective text handout. Both texts start by illustrating how to solve 
problem PROB150 using the tutor - indicating precisely what mouse-clicking and 
keyboard actions are required. The remainder of the texts altematively review the 
needed geometry content and then indicate the next problem the student should work 
on with the tutor. To keep track of their progress students were asked to use the 
Tracking Sheet to check off the problems as they completed them. 

The tutors were used as designed with one exception. We tried to compensate for 
the fact that loading a problem on GPT takes significantly longer (a minute or two) than 
loading a problem on ANGLE (about 10 seconds). Even though this speed-up is 
partially due to the greater efficiency of DC over GPrs expert (the other part is the Mac 
" hardware is faster than the Xerox 1109 hardware). we didn't want to get an effect 
simply because students were able to spend more time solving problems with ANGLE. 
Thus, we "brain-damaged" ANGLE by putting a pause in the problem loading 
procedure such that loading a problem on ANGLE would take about as long as 
loading it on GPT. 

3.2.7 Curriculum 

Given the relatively short training time (8 hours). we focussed on a limited portion of 
the curriculum. in particular, the topics of perpendicularity and triangle congruence. 
Traditional geometry textbooks are organized around stating. explaining and giving 
examples of geometry postulates, definitions, and theorems. All three of these can be 
stated conveniently as if-then or if-and-only-if rules and we refer to them collectively as 
rules or logical rules to distinguish them from production rules. The curriculum for this 
experiment included the 8 rules: DEFINITION.QF-PERPENDICULARITY. CONGRUENT· 
ADJACENT·ANGLES, CORRESPONDING·PARTS, SSS, SAS, ASA, MS, and REFLEXIVE. These 
rules are abbreviated and defined in the Rule Summary Sheet which was given to all 
students and appears in Appendix A. 

Four DC schemas cover the same territory as these eight rules. These schemas 
are: PERPENDICULAR-ADJACENT-ANGLES, PERPENDICULAR-CROSS. TRIANGLE­
CONGRUENCE, and TRIANGLE-CONGRUENCE-SHARED-SIDE and they are shown in the 
Concept Summary Sheet (Appendix A). 

The 30 problems used by both groups during tutoring appear on pages 3-5 of the 
Tracking Sheet (Appendix A). Subjects were allowed to refer to them during tutoring. 

3.2.8 Test Grading 

Proof Construction. We graded the problems on the Proof Construction in two different 
ways: (1) an overall planning and execution measure and (2) a planning only 
measure. The overall measure gives one point for each student step which is correct 
and a part of a solution. Note. that in the case of multiple solutions to a problem, the 



65 

maximum number of points for that problem is still the number of steps in the shortest 
solution. To prevent a student from getting more points for pursuing a longer solution, 
such solutions were scored by subtracting one from the maximum score for every 
missing step. Students lost half a poi nt for correct steps which were justified by the 
wrong rule. The maximum score on this measure was 32 for Proof Construction test A 
and 31 for Proof Construction test B. 

For the planning measure, one point was given for each correct planning step that 
the subject made. The maximum score on this measure is 12 for both version A and 
B. Correct planning steps correspond with the diagram configuration schemas in a 
correct solution. Subjects were credited for a planning step if: 

a) one of the written steps is the whole-statement of the corresponding schema 
(and in the right position of the proof), or 

b) one of the written steps is a part-statement which is unique to the schema, or 

c) one of the written steps is a part-statement of the schema and is justified by a 
rule which is unique to that schema, or 

d) the diagram is marked so as to uniquely indicate the schema. 

Other statistics were collected including: 1) the number of illegal moves, 2) the 
number of legal but off solution path moves, 3) the number of "rule errors' defined as 
steps which had the right statement, but were justified by the wrong rule, and 4) the 
number of "skipped steps" defined as the number of execution steps left out in the 
context of a correct planning step. 

Truth Judgment. Subjects received one point for each correct item. There were 17 
total points on both tests. 

Proof Checking. Subjects received 1 point for each incorrect step correctly identified 
as "doesn't follow" plus 2 more pOints if they correctly explained what was wrong with 
the step. They received 1 point for each correct step identified as ·OK". Both test 
versions had 8 incorrect steps and 8 correct steps, so that the maximum score was 32 
pOints (i.e., 8x3 + 8x1) . 

... Hidden Figures. Subjects received 5 points for each correct item and lost 1 point for 
incorrect item. With 16 items on each test version, scores could range from -16 to 

3.3 RESULTS AND DISCUSSION 

Overall Results of the Pre-Tests and Post·Tests 

Finlllr., 3.1 shows the percent correct on all four pre-tests for both tutor groups. The 
trsflds in favor of GPT on all four tests would suggest a slight advantage for the GPT 
Iluaents. These differences are not statistically significant, p> .6, P > .19, p > .9, and p 

respectively for the Proof Construction, Truth Judgment, Proof Checking, and 
110(1en Figures pre-tests. 



66 

800/0 
710/0 

700/0 

600/0 

500/0 
Pre-Test 
Percent 40% 
Correct 

300/0 
[;JMK3LE 

36% 
IIIIIGPr 

200/0 

100/0 

00/0 
Proof Judge Check Hidden 

Figure 3.1. Percent correct on pre-tests. 

Figure 3.2 shows the percent correct on all four post-tests for both tutors. We see 
essentially the same trends in favor of GPT as we saw in the pre-tests. But again, 
none of these differences are significant, p > .13, p > .28, p > .33, and p > .71 
respectively. The difference on the Proof Construction test is somewhat large and 

, .. below we discuss what might be going on here. However, the overall point is that in 
the first major test of ANGLE we have achieved a level of tutoring equivalent to GPT. 
In addition, we have good reason to believe that the current version of ANGLE has 
particular weaknesses that can be remedied. We provide evidence for these 
limitations below and discuss possible remedies. 

It is important to note that students did show significant learning in both groups. 
Comparing subjects' pre-test scores to their post-test scores, across both groups, we 

that subjects show significant learning on all but the Truth Judgment test (p-
yvallues, .0001, .09, .0001, and .02 respectively). If subjects had not learned, one might 

the adequacy of the experimental procedure, for example, was there enough 
time? Was the curriculum adequate? Was the subject population 

However, consistent with the established success of GPT, subjects 
Jeatrn~.rl quite a lot. On the proof test. subjects went from about one third correct on 
.avl~ra~le on the pre-test to more than two-thirds correct on the post-test1. These results 
'pnJVICle evidence that ANGLE is an effective tutor, though we clearly can't say that is 

effective than GPT. 

lNota, to avoid ceiling effects, these tests were designed to be difficuft. The Prool Construction 
lor example, contained items that are considerably more difficuft than the ones typically 

""Ulllen~d in a high school class. 



80% 

70% 

60% 

50% 
Post-Test 
Percent 40% 
Correct 

30% 

20% 

10% 

0% 
Proof Judge 

76% 

43% ,- N<J' I 
IIIIIGPT 

Check Hidden 

Figure 3.2. Percent correct on the post-tests. None of the differences 
are significant. p > .13. p > .28, P > .33. and p > .71, respectively. 

67 

Adjusting for Pre-Test Differences. We can try to adjust for the pre-test differences in a 
couple of ways. First, we can analyze subjects' pre- to post-test improvement in terms 
of the difference between the two scores. Comparing the improvements of the two 
groups. we get p-values of .13 •. 71 •. 23. and .61 respectively - again suggesting no 

. significant difference between the tutors. Second. given the high correlation between 
pre-test and post-test scores (.66 •. 33 •. 64. and .64. respectively). we can do an 
analysis of covariarice using the pre-test score as a covariate. Here we get p-values of 
.55 •. 15 • .42. and .62 respectively for the four tests. 

30 

25 
Proof 
Post- 20 
Test 

~ 
~ 

Pre-test Split: 
Tutor: LOW HI 

::;..t----.... 
lDW HIGH 

Proof Pre-test 
Median Split 

ANGLE 

GPT 

16.5 
N=9 
16.6 
6 
16.5 
15 

Figure 3.3. Hint of possible aptitude-treatment interaction on the 
Proof Construction test. It is not significant. p >.3. There is, 
however, a clear effect of aptitude, p < .001. The table on the right 
shows the post-test means and number of subjects in each cell. 

24.2 
6 
28.4 
9 
26.7 
15 

19.6 
15 
23.7 
15 
21.6 
30 



68 

There was some hint of an aptitude-by-treatment interaction as is shown in Figure 
3.3. Subjects were split into HIGHs, the 15 highest scoring subjects on the proof pre­
test, and LOWs, the 15 lowest scoring subjects. A two-way ANOVA yields a significant 
effect of aptitude (p < .001), but no significant effect of tutor (p = .31) and no significant 
interaction (p=.33). , 

There is virtually no difference between the tutors in the LOWs. Notice that to the 
extent there is a difference between the tutors it appears only in the HIGHs. In other 
words, perhaps the HIGHs are learning something from GPT for which the LOWs are 
not prepared and ANGLE does not provide. BelOW, we argue that ANGLE is teaching 
proof planning as well as GPT, however, it is perhaps at a disadvantage in teaching 
proof execution. To the elitent that learning proof planning precedes the acquisition of 
execution skill, it may be that the HIGHs have begun to master planning and are 
beginning to focus on execution, while the LOWs are still engaged in mastering 
planning. Thus, the LOWs are perhaps unable to take advantage of GPTs slightly 
better instruction of execution skill. 

3.3.2 Differences In Planning vs. Execution 

As described in the Method section, we graded the Proof Construction test in more 
than one way, the goal being to try to access student's proof planning skills separately 
from their overall proof writing skills. The graph on the left in Figure 3.4 shows that 
both tutor groups started out with the same proof skills, with a slight trend in favor of 
GPT. 

25.0 

S 20.0 

Pre-test Post-test 

23.6 

~. 15.0 11.0 11.9 

r 10.0 
e 

25.0 

20.0 

15.0 

10.0 
~ 

9.710.0 ~ 

5.0 

0.0 
Overall Score Plan Score 

5.0 

0.0 
Overall Score Plan Score 

Figure 3.4. Proof execution and planning on the Proof Construction 
pre- and post-tests. None of the differences are significant. (The trend 
in the overall score is the mw score corresponding with the percentages 
shown in the "Proof' column of Figure 3.2, p > .13.) 

The post-test scores are shown on the right in Figure 3.4. We see the trend in favor 
GPT in the overall score, 23.6 vs. 19.6, disappears in the planning score, 10.0 vs. 

In other words, while it may be possible that the current version of ANGLE is not 
as GPT at teaching execution skills, it appears to be doing equally well 

~acllinn planning. 



69 

From the perspective of the problem solving theory developed above, this result is 
quite interesting as it adds further evidence in favor of the psychological reality of the 
abstract planning space. In order to pin this result down further, we took some other 
measures from students' proof solutions as described in the method section. 

4 

3 

Average 
No. Occurr. 2 

per Test 

1 

o 
OffP 

Pre-Iesl Proof Measures 

RIEr IIIgl 
Proof Measures 

Figure 3.5. Proof measures on the Proof Construction pre-Iesl. 
None of the differences are significant 

Figure 3.5 shows these measures taken from the proof pre-tests. None of these 
differences are significant (though the positive trend on Off Path moves and the 
negative trend on Illegal moves are both consistent with the conjecture that the GPT 
students were better to start). 

3.6 shows the proof measures taken from the proof post-test. Here we find a 
Si!gnificalnt difference in the number of steps ANGLE subjects are skipping relative to 

subjects. This difference explains why the GPT students might be doing better on 
~XtjCUlllon but not on planning. In other words, step-skipping (along with rule errors) 
rnElaSllJre the number of execution errors subjects are making on the tests. Basically, 
,""''-Rf"' students' plans are just as good, but their execution is lacking relative to GPT 

While they get as many of the key steps in a proof, when it comes to 
trarlslating them into the formal language of geometry they leave out some of the 



4 

3 

Average 
No_·Occurr. 2 

per Test 

1 

o 
OffP 

Post-test Proof Measures 

SSkp RIEr IIIgI 
Proof Measures 

Figure 3.6. Proof measures on the Proof Construction post-test. The 
SSkp (steps skipped) difference is significant (p < .(01). Note: While 
the step-skipping per test goes up from the pre-test to the post-test, this 
does not indicate Ss are getting worse, rather, it reflects the increased 
opportunities to step-skip that Ss are getting by making more planning 
inferences on the post-test. 

3.3.3 Truth Judgment Results 

70 

As described in Section 3.2.5, it was hoped that the Truth Judgment test would 
measure students' planning abilities independently of their execution skills and that 
improvements in planning due to tutoring would show up in pre-to-post test 
differences. However, there was little if any transfer from the proof instruction (from 
either tutor) to this test. While students scores improved from 67% correct on the Truth 
Judgment pre-test to 72% correct on the post-test, this trend was only marginally 
significant (p=.09)1. 

Given the relative lack of improvement on this test, the invited conclusion is that the 
tutoring did not improve students' planning. However, this conclusion contradicts the 
results of the Proof Construction test which indicated students' planning abilities did 
improve. In addition, there is evidence from the Truth Judgment results that supports a 
daim that students did not fully appreciate (nor implement) the relevance of proof 
planning to solving these problems: 

1) While planning improved due to proof instruction, students did not show 
Significant improvement in the Truth Judgment test indicating they were not 
using what they had learned. 

2) Students were given 15 minutes to perform this test and most finished in 10 
indicating they were not spending the time necessary to come up with proof 
plans for the more difficult items on this test. 

lNote since this test had yes-no items on ft, these scores should be thought about relative to the fact 
someone knowing nothing is likely to score about 50% by chance. 

... 



71 

3) There is evidence that other, non-proof related, factors played a significant 
role in students' answer selection. This evidence is discussed below. 

3.3.3.1 The Misleading Model Effect. Instead of proof planning, it appears subjects 
were using a less~sophisticated approach. This approach involves using the provided 
diagram as a model of the given statements and simply reading-off whether or not the 
goal statement appears true. The possibility of such a strategy was anticipated and 
the items were designed to test for it (see Section 3.2.5). In other words, the items 
were designed such that reading-off the diagram yields the right answer for half of the 
items, ones in which the answer and diagram are consistent, but yields the wrong 
answer for the other half·of the items, ones in which the answer and diagram are 
inconsistent. Items are consistent when either the goal looks true in the diagram and 
the answer is YES or the goal looks false and the answer is CAN'T TELL; items are 
inconsistent when either the goal looks true and the answer is CAN'T TELL or the goal 
looks false and the answer is YES. Table 3.1 shows two of the items. (I'll discuss the 
easy-hard dimension below.) The correct answer for the first of these, problem 1b, is 
CAN'T TELL and since the goal looks true in the diagram (suggesting the YES answer), it 
is an inconsistent item. The correct answer for the second item, problem 9a, is YES 
and since the goal looks true (suggesting the YES answer), this is a consistent item. 

Table 3.1. Examples of Truth Judgment items. 

IEasy, CAN'T TELL, inconsistent item: 

1 b. If AC = Cii, must AD .L co? 

IHard, YES, consistent item: 

9a. If --'TQU = --'RQU and --'QTU = --'QRU, 
must --'STU:: --'SRU? 

D 

A C B 

Q 

T~-.jloI...-+R 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

In fact, subjects were often fooled by the inconsistent items indicating a significant 
to use the given diagram as a model. Figure 3.7 shows this result. The 

'rno1Iiz()nt:al axis indicates whether the correct answer is YES or CAN'T TELL, while the 
cgrlaptled lines indicate whether the item was consistent or inconsistent. The vertical 

!S the average percent correct for all students on both pre- and post-tests. Recall 
If students simply guess randomly they are likely to get about 50% correct by 



100% 

90% 

80% 
Percent .. - Cons 
Correct 70%.-
Overall 1 0 

60%0 __ ------------

..(>- Incns i 

50% f 
40% 4--------.... 

Yes Can't 
Correct Answer 

Figure 3.7. Percent correct on the Truth Judgment items broken 
down according to the correct answer and diagram consistency. 
Students perfonn significantly better on the consistent diagrams (p < 
.001). 

72 

The difference between the consistent and inconsistent items is significant (p < 
.001). There is no overall difference between the YES and the CAN'T TEll items (p = 
.12) nor is there a difference between good diagram items, where the givens and goal 
look true in the diagram (independent of the answer), and bad diagram items, where 
the givens and goal look false (p = .78). 

3.3.3.2 The Plan Difficulty Effect. In addition to the bias to read-off the conclusion from 
the diagram, there appears to be another strong bias in students' reasoning strategy. 
Figure 3.8 shows the results splitting the items into easy items, those corresponding 
with one planning step, and hard items, those corresponding with multiple planning 
steps. Again, consider the example items in Table 3.1. Problem 1 b is easy because it 
conrA~11nnds with one planning step, that is, the corresponding YES item can be proven 

one DC schema (the PERPENDICULAR-ADJACENT-ANGlES schema in this case). 
f'robIA,m 9a is hard because proving ,",STU 5 ,",SRU from the givens involves multiple 
schemas (either 3 TRI-CONG-SHARED-SIDE schemas or 2 TRI-CONG-SHARED-SIDE and 1 
PEfiIPEI~DIC;ULAR-IOR()SS schema). 

On the easy items, students are biased to answer YES (57% of the time) indicated 
the fact that they get more YES items correct than CAN'T TEll items. In contrast, on 
hard items students are biased to answer CAN'T TEll (62% of the time) indicated by 
fact that they get more CAN'T TEll items correct than YES items. The interaction 

!)etweElO item difficulty and answer type is significant (p < .001). Looking at this 
nTAI'''M'inn more directly, within the easy items the difference between the YES and 

TEll items is significant (p < .002). and within the hard items this difference is 
significant (p < .001). 



Percent 
Correct 

Easy Items 

100%, 

90%r=-----
80% ----. 
70% 

60% ~ 

60% 

40% +-------. 
Yes Can't 

Correct Answer 

100% 
90% 

80% 

70% 

60% 

60% 

Hard Items 

·6 ... Cons 

·0- Incns 

40% +-1 -----.... 

Yes Can't 
Correct Answer 

Figure 3.8. Percent correct on easy items and hard items. In addition 
to the bias to be deceived by the diagram, students were biased to 
answer YES on easy items and CAN'T TELL on hard items. The 
interaction between item difficulty and answer type is significant (p < 
.001). 

73 

There appear to be two possible interpretations for this plan difficulty effect: (1) a 
locality hypothesis or (2) a complexity hypothesis. The locality hypothesis is that 
subjects are applying a type of locality heuristic: ·constraints on a part (or parts) of an 
object are more likely to constrain nearby parts of the same object than more distant 
parts of other objects". (Note, other uses of spatial locality as a heuristic for reasoning 
were discussed in Sections 1.2.2 and 1.5.3.1.) In problem 1 b, for example, the given 
and goal statement apply to nearby parts of the same object, that is, the T-shaped 
configuration of perpendicular lines. So, following the heuristic, one would tend to 
(incorrectly) answer YES as 8 of the 30 subjects did. The other easy items can be 
characterized as containing one ·object" (corresponding to one of DC's diagram 

urations) and the givens and goals always refer to parts of this object. Thus, 
tOllc)wirlQ the locality heuristIc one would tend to say YES on these items, all other 
thir",., equal. In contrast, consider problem 9a where the givens constrain parts of the 

les above the line TR while the goal refers to parts of the triangles below this line. 
heLlri!::tir. would lead one to conclude that the givens and goal seem unrelated and 

Iin!Cnm~('!ti'vl answer CAN'T TELL as 17 of the subjects did. The other hard items 
'mntgin and the givens always refer to a different object than the goal. 

thi'11'1!:: equal, the heuristic suggests to answer CAN'T TELL. 

A second hypothesis, the complexity hypothesis, is simply that for complex 
:iiagrarrls, subjects will tend to answer CAN'T TELL while for simple diagrams, they will 

to answer YES. Since the diagrams for the hard problems were more complex 
the diagrams for the easy problems, this hypothesis is consistent with the data. 

can be alleviated by designing easy problems with diagrams that are 
as complex as the hard problems - that is, some irrelevant lines can be added 

diagrams of the easy problems to make them more complex. 

""'.,:~ Implications for the Mental Models Theory of Reasoning. These Geometry 
Judgment problems are much like logical syllogisms. While they are not limited 
premises as logical syllogisms are and they require specific geometry 

.. 



74 

knowledge as well as general logical knowledge, they do have the same structure as 
logical syllogisms: In both cases subjects are given certain premises and asked if a 
certain conclusion follows from those premises. Perhaps the leading theory on how 
humans solve syllogisms is Johnson-Laird's (1983) mental models theory. In this 
context, model is a specific instance of the general statements made in the premises of 
the syllogism. The mental modeUheory proposes that instead of using logical rules to 
solve syllogisms, people imagine a model (sometimes more than one) which is 
consistent with the premises. Then they check the problem conclusion to see if it is 
consistent with the model(s). If it is, they answer YES, otherwise they answer NOT VALID. 

What is unique about these Geometry Truth Judgment problems is that while in 
typical syllogism experiments subjects imagine their own model(s), here subjects are 
given a candidate modeP. The diagram that goes along with a problem is a model in 
that it contains specific features which are not stated in the premises. Some of these 
features may actually follow from the premises, for example, "::STU 5 "::SRU in problem 
9a of Table 3.1, while others may be fortuitous, for example, "::STU 5 "::QTU in the same 
diagram. 

By giving subjects a model, the Truth Judgment test provides a different kind of 
evidence for the mental models theory. In the typical experiment, the match between 
the theory and the subjects' actual reasoning process is performed indirectly by 
comparing the error patterns predicted by the theory with the subjects' error patterns. 
In contrast, the Truth Judgment test attempts to directly manipulate the reasoning 
process by providing a candidate model. If students are reasoning purely by abstract 
rules, they should not be influenced by the model we provide. The clear evidence that 
subjects are influenced by inconsistent diagrams indicates they tend to use the 
provided model and that, therefore, in those cases they are reasoning by model rather 
than by rule. 

If performed systematically and carefully, model-based reasoning can be quite 
effective. However, it can lead to error, for example. in logical syllogisms when not 
enough models are considered. This type of model construction error also accounts 
for the subjects tendency toward errors on the CAN'T TEll-inconsistent Items In which 
the diagram was over-specialized. Rather than attempting to construct other models 
(counter-examples) that might contradict the over-specializations, subjects tended to 
be influenced by the given model. 

The errors on the YES-inconsistent items are different. In this case, the provided 
diagram was not only inconsistent with the goal, but also inconsistent with the givens­
in other words, the provided diagrams were not good models. An effective form of 
model-based reasoning would notice this discrepancy and construct a new model 
C?nsistent with the givens. (Note that if the goal Is true, that Is, if it follows from the 
gIvens, then it will necessarily appear true in a good model.) 

As was hinted at in Section 1.6.1. an Important supplement to model-based 
r~~~~~~ is a component for chaining inferences from object to object. Without this, 
"p like the hard items could not be effectively solved. 

1While sUbjeCls were certainly free to construCl other models, the evidence suggests that, for the 
·--'I,a ... they did not. 



75 

3.3.3.4 Naive Geometry. Looking at these results a different way, they suggest the 
beginnings of a theory of naive geometry similar to the work 0(1 naive physics. 
Perhaps the difficulty students have with learning proof construction stems in part from 
conflicts with (or inadequacies of) their prior geometry conceptions or, more to the 
point, their prior re'asoning strategies. 

This section has identified a number of candidate geometry misconceptions (for 
lack of a better word). All of these are best thought of as representing tendencies 
-rather than strict modes of thought. The first, as indicated by the lack of transfer from 
the proof instruction, is the inability to recognize, without prompting, the relevance of 
proof construction to making truth judgments. The misleading model effect suggests 
two problems with students' use of mental models corresponding with the two types of 
inconsistent items. In the case of the CAN'T TELL-inconsistent items (e.g., problem 1 a in 
Table 3.1), they often fail to generate an alternative model, a counter-example, that 
would indicate that although the goal looks true in the provided model, it does so only 
because the diagram is over-specialized. In the case of the YES-inconsistent items, 
they often fail to notice that the given model is not actually a model of the problem at all 
since the givens are not true in it. 

3.3.4 Analysis of On-line Tutoring Data 
Both computer tutors maintained protocol records of student actions and tutor 
responses. We can look as these records to get a finer grain view of the learning that 
occurred and, in particular, we can investigate issues of (1) ease of interlace use and 
(2) effectiveness of tutoring strategies and messages. 

50 

45 
40 

35 
Tutoring 30 
Problems 25 

Solved 
(Mean) 20 

15 
10 

5 

o 

48.5 

Figure 3.9. Average number of problems solved by students during 
tutoring. The ANGLE subjects solved significantly fewer problems (p 
< .05). 

From watching students during the study it appeared that ANGLE was not always 
a good job of keeping students on-track during tutoring. OccaSionally, students 

observed clearly floundering. One potential manifestation of this is that the 



ANGLE students solved significantly fewer problems during training than the GPT 
students did (see Figure 3.9). p < .05. 

76 

It appears ANGLE subjects were doing more floundering than GPT as a result of 
the flexibility of the ANGLE interface and tutoring strategy. Flexibility is typically 
considered a virtue: It is considered particularly important by those advocating 
discovery learning and also by many of the early intelligent tutoring system designers 
(e.g .• see Brown and Burton. 1982). However. in this study it appeared that a number 
of problems students encountered stemmed from ANGLE's flexibility. 

3.3.4.1 Problems with the Bottom-out Hints. In both ANGLE and GPT. strategic hints 
are focussed on a good next step the student might take. Hints start out general and 
get successively more specific if a student continues to have trouble. In the end. the 
hints bottom-out by telling students exactly what they should do next. This is the last 
line of defense against continued floundering and is intended to be fool proof in 
helping the student get closer to the problem solution. In GPT. the hints bottom-out by 
not only telling the student what to do next. but actually dOing it for them. To prevent 
the students from relying too heavily on the tutor. ANGLE did not perform the next-step 
for the student. It simply told them what to do. 

Unfortunately. students were not always able to translate these "bottom-out" hints 
into the appropriate actions and because of the flexibility designed into ANGLE, 
students were not forced to perform them. Thus. they could potentially go off and 
continue to perform unproductive actions and waste valuable learning time. 

In turns out that this situation arose quite often. Bottom-out hints were given on 128 
or 23% of the 561 problems solved.1 On average. ANGLE students received about 
2.5 bottom-out hints on these 128 problems. Often students would not immediately 
perform the suggested next step. This is measured by two statistics. Since ANGLE 
repeats the bottom-out hint if the student continues to have trouble. one relevant 
statistic is the number of times a particular bottom-out hint was repeated on average. 
Bottom-out hints were repeated about once (0.97) on average. Any repeats indicate a 
discrepancy between the tutoring intentions and what the student is thinking. 

The second statistic is more dramatic and leads to a more telling result. It is the 
amount of time that is spent from the time the bottom-out hint is given to the time the 
student performs the suggested next step. Since there is more than one solution to 
these problems. it is possible that the student never performs the suggested next step 
in the course of completing the problems. This happened rarely though. only about 

. 8% of the bottom-out hints given were never followed up with the suggested next step. 
In the cases where students do end up eventually performing the suggested next step, 
about 75 seconds elapse on average. Multiplying this by the number of bottom-out 
hints given, we find that the students in this study spent about 26.6 minutes on average 
between being told what to do next and actually doing it. This is about 6% of the total 
instruction time. 

It is certainly possible that some useful work is going on during this time. The 
SIllrll>nf may be pursuing alternative paths. working out details, posting future subgoal 
'is:~~Q~~~;o~r working backward. Nevertheless. this statistic clearly indicates a 
jil between the way I expected the student-tutor interaction to go and the 

1Some ofthe early protocol data was lost. Students actually solved 586 problems. 



way it actually did. In the Chapter 4, I suggest a remedy to this problem involving a 
simple "interface tutor" that will kick-in after bottom-out hints are given and guide the 
student in performing the suggested action. 

77 

3.3.4.2 Trash Can,Misuse. Another fairly common behavior that was indicative of 
floundering was the way in which students occasionally misused the trash can that is 
available (in the lower left corner of the screen) to dispose of unwanted statements. 
There were quite a few cases where a student would post a useful schema, end up 
throwing it out, and then have to reconstruct it again later. One of the intended benefits 
of ANGLE's interface was its flexibility to allow students to post "island" subgoals 
without having to immediately link them into the proof. I observed a couple of pilot 
subjects using the screen in this way on an earlier version of the system without the 
trash can (briefly described in Koedinger & Anderson, 1990b). Sometimes students in 
this study posted such island subgoals, but there are many cases where this might 
have happened but didn't because the subject threw away the statement. 

Perhaps making the trash can less clearly visible and not so simple to use, would 
discourage this kind of misuse. In addition, it would probably be a good Idea for the 
tutor to stop students from throwing away certain statements - especially when the 
statement is one of the possible next steps. 

3.3.4.3 Execution Feedback Inadequate, Another curable problem, that contributed to 
floundering inVOlved the overly simple execution feedback that said, for example, "the 
premises of SAS should be 3 segment or angle congruence statements", Students 
were quite confused when this came up in cases where they actually had 3 segment 
or angle congruence statements as premises. The statements they had chosen were 
wrong, for example, because they corresponded with the illegal side-side-angle 
combination, 

3.4 CONCLUSIONS OF THIS PRELIMINARY EVALUATION 

Unfortunately, we are not yet at the pOint where we can decisively affirm or disconfirm 
the hypothesis put forth at the beginning of this chapter, namely, that the development 
of more accurate and powerful cognitive models of problem solving can lead to major 
improvements in the instruction of problem solving, We need to address two key 

,pr()ble'ms in order to perform a better test of this hypothesis: (1) expand the size of the 
' ... ""UHL and (2) improve the implementation of ANGLE's interface and tutoring 

Because of the relatively short time for instruction (8 hours), the curriculum in this 
stUI:lV was kept small (only 8 geometry rules andlor 4 schemas). As it turned out, the 
maillrifv of students had plenty of time to finish the 30 problems provided - only 4 did 

the others did problems over again. Thus, the curriculum could easily be 
ixpa:ndE~d without increasing the instruction time. This is important because a key 
Im9I'Anr'" between the problem solving method ANGLE teaches and the one GPT 
lacl1es is that ANGLE's method is more effective in the large search space of 

rules (the execution space). By limiting the curriculum, the size of the 
"""'''uem space is reduced and if it is small enough, the search benefits of ANGLE's 
19th/vi effectively disappear. With a larger curriculum, then, we are more likely to see 
Qiffeir9nl~A between ANGLE and GPT. 



78 

The second problem we need to address is the limitations in the implementation of 
ANGLE's interface and tutoring components as revealed by this study. Potential 
remedies for the more significant of these limitations are discussed in the first section 
of Chapter 4. 

Perhaps it is well-known to those few who have designed and successfully tested 
an intelligent tutoring system, that getting the student-tutor interaction right requires 
careful and lengthy user study that goes beyond informally watching a few students 
work with the system for a couple of hours. While I knew prior to the study that 
ANGLE's tutoring schemes were not perfect, I did not anticipate certain problems like 
the trouble students had .understanding and implementing the bottom-out hints. 
Perhaps the conclusion one should draw is that such problems are necessarily a part 
of the development process and that the tuning of the interface and tutoring 
components is equally as important as following through on the implications of a 
cognitive model. 

Still, it remains to be seen what instructional effect an improved cognitive model 
can have. When the interface and tutoring components of ANGLE have been cleaned 
up and further tuned, a more realistic test can be performed. 



79 

CHAPTER 4. 
GENERAL DISCUSSION AND FUTURE PLANS 

This chapter has a double role of (1) indicating directions for future work as inspired by 
the preliminary evaluation of ANGLE reported in Chapter 3, and (2) discussing the 
general implications of this research for model-based instructional design. One 
obvious direction for future work is Improving the current limitations in the 
implementation of ANGLE's interface and tutoring components. This direction is 
discussed in Section 4.1. A less obvious direction involves improving the knowledge 
measurement tools that !'Ire crucial both for measuring learning outcomes of different 
instructional methods and for understanding the nature of that learning. This direction 
is discussed in Section 4.2. Finally, Section 4.3 concludes by recapping this research 
program and discussing how it might be applied in other domains. 

4.1 PLANS FOR CONTINUED DEVELOPMENT OF ANGLE 

Perhaps, the most important agenda item for improving ANGLE is to get rid of a 
number of minor bugs and discrepancies between the expected and observed 
student-tutor interaction. Improvements are needed in the interface and the wording of 
the tutor messages. Rather than mention all of these, I'll focus on the ones that could 
be of more general interest. 

4.1.1 Improving the Interfsce 

4.1.1.1 Dealing With the Bottom-out Hint Problem. One of the major discrepancies 
between the expected and observed student-tutor interaction was the way in which 
students responded (or failed to respond) to the bottom-out hints when they were 
provided by ANGLE. One possible remedy would be to do as is done in GPT, and 
perform the next step for students in this situation. An intermediate possibility is to still 
have the student perform the step, but require them to do it before going on. In 
addition to keeping the student at least physically involved, this approach has the 
added side-effect of essentially tutoring them on the interface. 

In other words, the bottom-out message essentially presents the student with an 
interface goal, for example, "Select the CONGRUENT TRIANGLES concept and 
indicate .6.ABC = .6.XYZ in the diagram". The proposed change would require the 

>5UlOelnI to perform the necessary interface actions to implement this step. If the student 
IlArt'nrrtl'" an inappropriate interface action, the tutor would give them feedback 

~spleci~ically addressed at performing the correct interface action. 

This change amounts to an on-line interface tutor. Since the interface goals 
'pnlSerrted in the bottom-out hints can be performed by a simple list of interface actions, 
.lmSllenlen:tina this interface tutor should not be too difficult. 

1.1.2 Dealing with the Whole-statement Encoding Problem. One of the difficulties 
ICOLlnta,red in thinking about how the interface should reity the cognitive model, 

IIVIllVArI the distinction made in the model between the whole-statement of a schema 
the schema itself. For the most part, whole-statements can be considered 

iUiValel1tto schemas and thus, in the ANGLE interface a schema/concept is 
ipre.sented on the screen with both its diagram configuration and its whole-statement. 

~O\'ll'evElr, there are some places where the whole-statement might be treated 
Hoeperldelntlv of the schema, for example, when a whole-statement appears as part of 



80 

the problem givens or goal. In this case. there is a translation process necessary to 
convert from the whole-statement to a corresponding schema. This process is part of 
the statement encoding process in the DC model (see section 1.3.2.2). The question 
was whether and how this whole-statement encoding process would be represented 
in ANGLE. 

A compromise was made. On one hand. whole-statements that appeared in the 
givens or goal could be treated. for the purposes of making justification links. just as if 
they were schemas. This is a short cut in which the whole-statement encoding 
process is left implicit. Alternatively. the student could create the corresponding 
schema and attach it to tne whole-statement. and thus explicitly perform the whole­
statement encoding process. The interface responded by putting the schema (whole­
statement plus configuration instance) in the given or goal position that the whole­
statement had occupied. An example of the result is shown in Figure 2.13. 

While the student was free to do it either way. in the case that the student needed 
help at this point. the tutor suggested that they explicitly perform the whole-statement 
encoding step. Two problems arose. While the interface actions to perform this step 
were the same as those necessary to select and Justify any schema. the effect was 
different (i.e., the schema replaces the whole-statement to which it was linked). 
Understanding this interface operation was another thing for students to leam that may 
have distracted thel'(l from learning geometry. 

A second problem was the unanticipated awkwardness that sometimes resulted 
from the way the schema hint templates got applied to this situation. While the majority 
of these hints read just fine. one of them, the justification bottom-out hint (see section 
2.4.3.2), turned out to be particularly awkward. Since schemaslconcepts were referred 
to in the hint messages using the same label as the label for the whole-statement, the 
Justification bottom-out hint message, which has the generic form· Justify <the desired 
schema.> using statements: <the necessary statements>.", ended up as "Justify 
<whole-statement> using statements: <whole-statement>.". For example, if the whole­
statement AABD = ACBn appeared as a given and the corresponding TRIANGLE­
CONGRUENCE-SHARED-SIOE schema had been constructed, then if the student 
happened to need a bottom-out hint. it would read "Justify AABD = ACBO using 
statements: AABO = ACBD". 

This proved a bit confusing to students. Many of the cases where a student never 
(PE~rforml~d the step suggested by a bottom-out hint were cases where the student got 

hint, didn't know how to implement it, and was eventually able to perform a 
diffl9relm step (i.e., one that involved skipping the whole-statement encoding step) with 

help from the tutor. 

The proposed remedy for this problem is quite simple: Eliminate the need to 
explicitly perform whole-statement encoding. In addition. whenever problem given or 
goal is a whole-statement, the tutor should display this statement as a schema 
. with the diagram configuration. Prior to the study I had thought that 
enc:ouraaina the whole-statement encoding process would be helpful for the student 

did what to do next. In such a situation, it seemed that the student's 
>roblArn might be that he or she wasn't recognizing in the diagram the particular 
)bjElcts referred to by the whole-statement. The process of selecting the 
lOmesnnnl'1linn schema would help the student make this recognition and focus on this 

From watching students, this recognition of given or goal statements in the 



diagram does not appear to be a great difficulty, especially in comparison to the 
difficulties that arose from allowing and sometimes encouraging the explicit whole­
statement encoding step. 

4.1.2 Improving ,Tutoring Messages and Strategies 

81 

4.1.2.1 Adding Buggy Ways-to-prove. One of the problems with ANGLE's tutoring 
messages was that the execution feedback was quite simple and sometimes 
misleading. In particular, this feedback did not respond well to common bugs, like 
trying to prove triangles congruent using two sides and a non-included angle. These 
situations are captured in GPT by matching them against particular "buggy' production 
rules. A similar thing can be done in ANGLE by elaborating the schema 
representation to include buggy ways-to-prove in addition to the existing (non-buggy) 
ways-to-prove. Tutoring messages can then be attached to these, just like they are 
attached to buggy rules in GPT. 

4.1.2.2 What's the Proper Role of Execution Training? One important question that 
was considered before the study and still remains unanswered is: what is the proper 
role of execution training? One could take the view that proof instruction in high 
school geometry should emphasize proof planning and not be too concerned about 
proof execution, that is, whether students get the formal details exactly right. In fact, a 
recent proposal for high school standard suggests a deemphasis on formal proof and 
more emphasiS on informal proof (Romberg, 1987). However, at least for comparison 
sake, it seemed important that the two groups (ANGLE and GPT students) be tested on 
the same standard two-column format. Thus, it also seemed important to give training 
within ANGLE on execution as well as proof planning. 

Following the cognitive model, ANGLE's feedback scheme always suggests 
planning moves first and only suggests execution moves once a complete plan has 
been found. However, consistent with the effort to make the system flexible, ANGLE 
allows students to integrate planning and execution. In fact, students rarely completed 
planning before beginning execution. One measure of this is the percent of inferences 
that occurred after execution began, but before planning was finished. Thus, for 
example, if all the planning is done fiist this percentage should be O. On average, 

. 47% of students' inferences were in this mixed stage. Students' tendency to mix 
n!l'!nnirln and execution was not quite significantly correlated with post-test 

'OQ:rfnrlm"",,, .. (p '" .06). However, the pattern is that the students who began execution 
also scored better on the post-test. This is probably a reflection of students' prior 

I with the execution space and the good students' better facility with it. 

Another issue relating to the role of the execution training in ANGLE, is the 
'colnplexilties to the interface that it added. Again such complexities presented 
.S1UIClents with a learning task that distracted them from geometry. 

A couple of possibilities may be pursued with respect to this issue. One is to 
the execution training from ANGLE and simply focus on tutoring proof plans. 

be interesting to see how such instruction would transfer to the task of coming 
with a completely detailed two-column proof. Another possibility is to have the tutor 

the planning first approach of the cognitive model. Only after completing a 
would students be allowed to do the proof execution. 



4.2 IMPROVING KNOWLEDGE MEASURES 

4.2.1 Improving the Truth Judgement Test 

82 

It was hoped that t~e Truth Judgment test would measure students' planning abilities 
in a way that wouldn't be masked by lack of execution abilities. Having such a test is 
still desirable, however, as it turned out students did not appear to spontaneously see 
the relevance of proof planning to answering Truth Judgment items. Part of the reason 
may be due to the fact that as YES·NO type questions these items had the appearance 
of being easy, and thus, perhaps it did not occur to students that anything as difficult as 
doing proof planning would be relevant. In addition, students were given only 15 
minutes to do the 17 items on this test (in fact, most finished in about 10 minutes). Four 
of these items could be solved with proofs about as difficult as the four proof problems 
on the Proof Construction test which students were given 35 minutes to solve. In other 
words, students really didn't have time to do proofs to help solve these problems. 

A number of things can be done to encourage proof planning. First, an illustration 
should be given to students, prior to taking the test, of how planning a proof can help 
answer these questions. Second, fewer problems should be given with more time 
allowed for each. It should be emphasized to students that they have lots of time to 
think hard about each one of the items. Third, students can be asked to give a reason 
for their answer. In the case that they answer YES. they should provide a proof sketch. 
In the case that they answer CAN'T TEll, they should provide a counter example. 
Examples of both types of reasons should be given prior to the test. 

4.2.2 The Need for a Measure of Schema Knowledge 

Both GPT and ANGLE are primarily focussed on teaching the process of constructing 
proofs and not on teaching the declarative knowledge of the basic operators, rules in 
the case of GPT and schemas/concepts in the case of ANGLE. To the extent that 
students don't have a reasonable grasp of this basic knowledge, they are likely to 
have trouble. This situation is potentially more problematic in ANGLE because the 
units of declarative knowledge in ANGLE, the concepts: (1) are not explicitly taught in 
the standard curriculum and (2) are much bigger than the formal rules which are the 
declarative knowledge units in GPT. It seems possible that the effectiveness of 
ANGLE might interact with the level of students' prior knowledge of the concepts. 
Thus, it seems important to have a measure of this knowledge. 

Such a test might be made up of items, much like the easy items on the Truth 
~Ju(:lgmlent test, in which the student is given a diagram configuration and some facts 
>~,..¥¥w,it, and asked if a particular conclusion follows. One type of item would test 
,Imowledcle of the part-statements by providing the Whole-statement as the given and a 
poissible part-statement as the goal. Another type of item would test knowledge of the 
wavS-1to-[lrmlQ by providing sets of part-statements as the givens and the whole­
itateiment as the goal. 

4.3 RESEARCH SUMMARY 

final section provides a recap of the research agenda carried out in this thesis. 
, rather than simply summarizing, I've attempted to generalize the key steps 

present them as a prescription for tutor design. Certainly there are other 
leor'etically motivated routes to successful tutor deSign, not to mention getting there 

.. 



83 

by good intuitions or serendipity. This prescription is provided merely as one possible 
route that may (1) be directly applied in some domains or (2) be used as a departure 
point for developing related approaches in other domains. 

The approach ~n characterized in five steps: 

1. Identify the execution space. 
2. Look for implicit planning in verbal reports. 
3. MOdel this implicit planning. 
4. Use the model to drive tutor design. 
S. Tune the tutor implementation. 

Below I discuss the significance of each step. suggest how it might be done in 
general. and review how it was done in this project. 

4.3.1 Identify the Execution Space 

This step sets tlie stage for step 2 where one looks for underlying problem solving 
processes that are effectively hidden in current instruction. First. we need to know 
What aspects of the problem solving process are revealed. at least implicitly. by current 
instruction. This is the task of identifying the execution space. The execution space for 
a domain is the problem space most directly induced from the way problem solution 
steps are typically or conventionally written down'. In other words, the operators of 
this space correspond one-to-one with the written problem steps. 

As discussed in Section 1.1. the execution space operators for geometry are the 
various definitions. postulates, and theorems that appear as the "reasons· in the steps 

. of the conventional two-column proof format. The execution space operators for 
algebra equation solving are the various rules (e.g .• You can add the same number to 

sides) for manipulating equations. In physics problem solving (e.g .• the kind 
analyzE!d by Larkin. at. al.. 1980). the execution space operators might be the relevant 

:physlc)5 formulas. 

Another potential guide to the operators of the execution space is to look at the 
of knowledge that are provided to students in their textbooks or lectures. Quite 
these units of knowledge correspond with the written problem steps. For 

AJ(~lmn,l .. the traditional geometry curriculum is organized around presenting and 
. the very same rules that appear as reasons in two-column proof solutions . 

. similar situation is apparent In algebra and physics. 

A straight-forward way to model problem solving in these domains is as a heuristic 
in the execution space - the only trick is to find appropriate operator selection 

le~~~~~;S; From the perspective of a student. to the extent that the execution space 
Iri a good characterization of skilled problem solving. his or her learning job is 

easier. By definition, execution operators can be induced fairly directly from the 
of worked out examples and may be supported by verbai descriptions in . 

tboli)ks and lectures. For example. consider aigebra equation solving. An example 
out solution is shown in Table 4.1. 

'NeweR and Simon (1972. p. 144) referect to a 'basic problem space" and gave examples of one in a 
domains. It is evident from their examples that what they meant by a basic problem space is 

what I mean by an execution space, however. they did not explicitly define it. 



Table 4.1 An worked solution in the domain of Algebra equation solving. 

3x - l3 

3x - 13 

~ 2(x - 3) 

= 2x - 6 

3x - 13 - 2x ~ - 6 

3x - 2x = - 6 + 13 

x = 7 

Pistribute 

x's to left side 

Num's to right side 

B4 

In this domain, the execution operators can be fairly directly induced from the steps 
in worked out examples like that in Table 4.1. This claim is supported by the fact that 
an early machine learning program did exactly that (Neves, 1978). In addition, the 
general difference-reduction heuristic turns out to be an effective means of operator 
selection. Because this domain independent weak-method works in this domain, 
learning operator selection is relatively easy. 

While heuristic search in the execution space is a straight-forward candidate for 
modeling problem solving in a domain, it may not be the problem space that skilled 
problem solvers typically use in this domain. The next step is to see if it is or not. 

4.3.2 Look for Implicit Planning In Verbal Reports 

The purpose of this step is to identify the nature of skilled problem solving in the 
domain and in particular, to see if it deviates from heuristic search in the execution 
space. To do so, one can collect concurrent verbal reports (Ericsson & Simon, 1984) 

. of skilled subjects solving problems in the domain. As Ericsson & Simon point out, 
." subjects should not explain what they are doing, but merely report what they are 
.••• thinking. To the extent that heuristic search in the execution space provides a good 
. model. subjects' successive verbalizations should correspond with successive states 

the execution space . 

. However. subjects' verbalizations could deviate from the execution space in a 
"umber of ways: 

1. Multiple execution steps might be aggregated into a single 
verbalization. 

2. Successive verbalizations may skip steps in the execution 
space. 

3. Verbalizations may not specify an execution state in full detail, 
but rather only indicate some abstract feature(s) of it. 

. Regularities in such deviations suggest "thinking steps" which are not represented 
the execution space. From the perspective of the student, these thinking steps are 
implicit part of the planning process which, in contrast to the execution operators, 

be directly induced from worked out examples. In other words, when there is 
Lllal~n1llCl in the thinking of skilled problem solvers, there may be aspects of a 

;cesisful solving method which are hidden in the traditional curriculum. 

Section 1.2, I showed that skilled geometry problem solvers skip steps in 
","Ulilon space (#2 above) while developing an initial proof plan. The knowledge 

.allc)WS them to do so is hidden in the geometry curriculum. While it is probably 
to induce the execution operators from the steps of worked out geometry 



85 

proofs in similar fashion to Neves' (1978) program for Algebra, it is not possible to 
apply a general weak-method like difference-reduction or means-ends analysis to 
effectively perform operator selection in the execution space of geometry. As the step 
skipping in the verbal reports suggests, successful search in geometry involves 
operators other than those in the execution space. 

It is possible that no evidence for implicit planning is found in a domain, in other 
words, skilled subjects work in the execution space. This seems likely in the domain of 
algebra equation solving. In such a case, building a tutor for this domain may be 
inappropriate. Conventional instruction may be adequate. In other words, finding no 
implicit planning would suggest that the conventional written display of problem 
solving steps corresponds fairly well with the thought steps necessary for successful 
problem solving in that domain. In this case, well-motivated students may not have 
much trouble in inducing the necessary operators. A cognitively-based intelligent 
tutoring system (ITS) is unlikely to be much different from conventional instruction and 
thus, unlikely to help much. In fact, an ITS for algebra equation solving has been 
compared with a conventional classroom and although students learn with this tutor, 
they don't learn any better than students in a normal classroom (J. R. Anderson, 
personal communication). 

4.3.3 Model this Implicit Planning 
If evidence for impliCit planning is found, the question becomes what is the knowledge 
that is responsible for the non-execution space inferences? I can offer no sweeping 
generalizations for how to come up with the elements for a model of implicit planning. 
I can only say that the diagram configuration schemas described in Section 1.3.1, 
evolved from an initial attempt to apply ideas about abstract planning and abstract 

. problem spaces (Sacerdoti, 1974; Newell & Simon, 1972). In particular, the first 
attempt at a model was based on applying the idea of equivalence classes as a way to 
collapse nearby problem states into one. 

In the case of verbalization types (1) and (2) above, it is possible that the implicit 
planning knowledge is the result of composing execution operators. In section 1.6.3, I 

ued against a macro-operator interpretation of the genesis of DC-schemas. In the 
pr();cess, a number of potentially general criteria were used to distinguish macro­
nn.~r<>l'n"" derived from execution operators from operators that merely bear a macro­
.on~,r"t,~r relationship with the execution operators. In the case of verbalization type 

the abstract problem space ideas are likely to be relevant. For example, Newell 
Simon's (p. 152, 1972) augmented problem space for crytarithmetic provides a 

mOdlel of such verbalizations (e.g., abstract features 01 states like the number must be 

Use the Model to Drive Tutor Design 

. pnce an accurate model of implicit planning has been developed the challenge Is 
find a way to communicate this model to students. This issue is discussed in 

2.1. Since people seem to learn best by doing, directly communicating it to 
doesn't usually help much. By design, this model contains problem solving 

rQCI~ssthat are not reflected in the notation of the current curriculum. Thus, it is 
I(:e!!salry to invent new notations which relly the previously hidden structures and 
ocesses. These notations can be the basis for interface design. For example, 

configuration schemas became the basis for the icons in ANGLE's concept 
and for the representation of concept instances in the proof graph. In addition, 



86 

the computer medium affords the possibility of inventing novel actions which can more 
directly reify the processes of the model. For example, the interface actions for 
selecting a schema instance from the problem diagram reify the diagram parsing 
process (see Section 2.3.2 and Figure 2.2). 

The goal of the design of tutoring strategies and messages should be to support 
and articulate the problem solving. method. In ANGLE, the tutoring strategy of 
focussing on the schema level as the proper grain size for next-step advice is intended 
to support the learning of the diagram configuration space (see Section 2.4.4 and 
Figures 2.13-15). The use of terms like "concept", "part-statement", and "ways-to­
prove" is intended to articulate crucial aspects of this novel notation. 

4.3.5 Tune the Tutor Implementation 

While cognitive models can guide the design of the interface and tutoring components, 
the process of implementing these guidelines is still somewhat of a black art. Thus, it 
is important to test and tune the implementation. What seems right intuitively may not 
be effective. In addition, because of the great complexity of such systems, all possible 
interactions cannot be antiCipated. Long periods of use by multiple students is the 
only way to ·shakedown" possible unanticipated interactions. 

Two examples from the preliminary study are most notable. First, there was the 
problem with bottom-out hints and more generally, with the conflict between interface 
flexibility and user confusion. Intuitively it had seemed that learning would be 
facilitated by both (1) always requiring students to enter proof steps even in the case 
that the tutor has told them what to do, and (2) always allowing students the flexibility 
to ignore hints, for example, if they had something else they wanted to do. These two 
notions led to the fact that students were able to ignore ANGLE's bottom-out hints. 
Perhaps in part because the interface was not clear enough and in part because the 
wording of the bottom-out hints was conceptually focussed rather than interface 
IUI.i\J:::>:::>tlU, students ignored these hints much more often and for a longer period of time 

was expected. 

Second, there was the problem with whole-statement encoding. Here again, there 
apparently well-motivated goals to (1) maximize the student's involvement, that 

by not doing the whole-statement encoding step for them, and (2) allow flexibility. 
is, allowing students to either explicitly perform or skip this step. However, the 

was, on one hand, added complexity to the interface with little or no added 
i~~:~,;~~~:~ impact and, on the other hand. an interaction within the generic hinting 
$I that resulted in a confusing tutor message. 



87 

CONCLUSION 

This thesis illustrates a program of basic and applied research that started by 
understanding the nature of a complex problem solving domain and next, applied this 
new understanding to the development of improved instruction for that domain. This 
instruction comes in the form of an intelligent tutoring system called ANGLE. 

I conclude by reviewing the general contributions of this thesis as stated in the 
introduction: 

1. A new methodology for verbal protocol analysis involving the identification of 
step-skipping with respect to the execution space of a domain. 

In Section 1.1, I defined the execution space as the problem space that 
corresponds one-to-one with the steps that problem solvers conventionally write down 
in solving problems in that domain. I showed how one could use the execution space 
of a domain as the basis for analyzing verbal reports of subjects solving problems in 
that domain. By looking for step-skipping with respect to the execution space (see 
Section 1.2), one can identify implicit planning (Le., thought that is not represented in 
the conventional notations of the domain) and take a step toward both a deeper 
understanding of the domain and a promising approach to improved instruction. 

2. A new theory of geometry expertise (DC) that accurately describes human 
behavior, has an efficient computer implementation, and pulls together a 
number of empirical results on the nature of human expertise. 

In Section 1.3, I described DC, a model of skilled geometers informal and intuitive 
proof planning skills. This model is based on knowledge components, diagram 

:cclnfi!Junaticln schemas, which merge perceptual knowledge about important geometric 
~;:21~~~;:: conceptual knowledge about the properties and sufficiency conditions of 
11 categories, and rule knowledge of how these categories relate to the formal 
1~f1!i:lU~lgtl of geometry. Section 1.4 established the computational power and empirical 
accuratw of the model. Section 1.6.2 showed how DC's perceptually-based schemas 

a detailed explanation of experts' ability, in certain domains, to solve 
elaJ~velv simple problems by pure forward inferencing and an integration of the 
Imp,lric;al results indicating experts' superior problem-state memory and their superior 
)fOblem solving effectiveness. 

3. A detailed characterization of the end-state of a complex learning process 
that challenges current learning theories and that can be used as a test-case 
for new learning theories. 

Section 1.6.3, I discussed how straight-forward applications of learning theories 
as ACT' or Soar are unlikely to produce the regularity in knowledge organization 

by DC's schemas. In particular, this regularity seems to exclude deductive or 
nOOil-ieVellearning processes which acquire expertise through the composition of 

space operators. Rather, it seems more likely that DC schemas (and 
percaptually-based planning schemas in general) are learned through 
or knowledge-level learning processes. These inductive learning 

lIlar1;"nnC! would include a perceptual chunking process capable of creating ever­
diagram configurations (percepts in general terms). and a categorization 



process capable of attaching part-statements (properties) and ways-to-prove 
(sufficiency conditions) to these percepts. 

88 

The fact that novice problem solvers exhibited DC-like step-stepping on the proof 
pre-test (see Section 3.3.2) provides further evidence that leaming in geometry 
doesn't start with the execution space and then improve on this representation through 
composing operators. Rather, very earty in the learning process, these novices 
appear to have acquired some non-execution operators that, though sometimes 
erroneous, bear a closer similarity with DC schemas than with the formal rules of 
geometry. 

4. A theory-based approach to the design of the interface and tutoring 
components of an intelligent tutoring system (ANGLE). 

In Chapter 2, I showed how a cognitive model of implicit planning (DC) could be 
translated into design specifications for the interface and tutoring components of an 
intelligent tutoring system. Perhaps the most important aspect of this approach is how 
a model of implicit planning can be used to design novel interface notations and 
actions. By definition, a model of implicit planning must make use of representations 
and processes that are not represented in the current notation of the domain. Thus, 
with a model of implicit planning in hand, the tutor designer can use it to guide the 
invention of new notations that more accurately reflect the processes of skilled 
problem solving. As part of a tutor's interface, these notations deliver instruction 
implicitly by providing students with a more cognitively meaningful way to think about 
the domain. 

5. An initial test of the hypothesis that the development of more accurate and 
powerful cognitive models of problem solving can lead to major 
improvements in the instruction of problem solving, particularly within the 
context of an intelligent tutoring system. 

While there have been numerous successful examples of applying cognitive 
science to instructional design (e.g., Anderson, et. aI., 1990), these have been cases of 

. comparing traditional (non-cognitive) instruction with cognitively-based instruction. 
These studies show the impact of designing instruction based on a cognitive model 

than on intuitions. The hypothesis above poses a more detailed question: Do 
u"""" cognitive models lead to better instruction? 

.. By testing this hypothesis in the medium of intelligent tutoring systems, we can 
have both control over the exact nature of the instruction that is delivered (which is 
hard to do with human teachers) and maintain some of the on-line flexibility of a 
human teacher (which cannot be done with text-based instruction). While the 
prelimi'nalN study described in Chapter 3 did not conclusively affirm or negate this 
hYllOthlesi:s, it moves us a step closer. Despite the fact that much less effort has been 

into ANGLE to this pOint, it is about equal in instructional effectiveness to the 
)relliotlslv successful Geometry Proof Tutor. The hope is that by eliminating the 
problems with ANGLE's implementation and expanding its curriculum, we can exceed 

effectiveness of GPT and confirm the hypothesis. 



REFERENCES 

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard 
University Press. 

89 

Anderson, J. R. (1988). The expert module. In M. C. Polson & J. J. Richardson (Eds), 
Foundations of Intelligent Tutoring Systems. Hillsdale, NJ: Lawrence Erlbaum 
Associates. 

Anderson, J. R., Boyle, C. F., & Yost, G. (1985). The geometry tutor. In Proceedings of 
the International Joint Conference on Artificiallntelligence-85. Los Angelos: IJCAI. 

Anderson, J. R., Boyle, C. F., Corbett, A, & Lewis, M. (1990). Cognitive modelling and 
intelligent tutoring. Artificial Intelligence, 42, 7-49. 

Anderson, J. R., Greeno, J. G., Kline, P. J., & Neves, D. M. (1981). Acquisition of 
problem-solving skill. In J. R. Anderson (Ed.), Cognitive Skills and their Acquisition. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group 
instruction as effective as one-to-one tutoring. Educational Researcher, 13,3-16. 

Bmine, M. D. S. (1978). On the relation between the natural logic of reasoning and 
standard logiC. Psychological Review, 85, 1-21. 

Brown, J. S. & Burton, R. R. (1982). An investigation of computer coaching for informal 
learning activities. In Intelligent Tutoring Systems. Ed. by Sleeman, D. & Brown, J. 
S. London: Academic Press. 

Bonar, J. G., & Cunningham, R. (1988). Intelligent tutoring with intermediate 
representations. Paper presented at ITS-88. Montreal. 

Chase, W. G., & Simon H. A. (1973). The mind's eye in chess. In W. G. Chase (Ed.) 
Visual Information Processing. New York: Academic Press. 

Cheng, P. W., & Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cognitive 
Psychology, 17, 391-416. 

Groot, A. (1966). Perception and memory versus thought: Some old ideas and 
recent findings. In B. Kleinmuntz (Ed.), Problem Solving. NY: Wiley. 

Eric:s5Cm K A., & Simon, H. A (1984). Protocol Analysis: Verbal Reports as Data. 
Cambridge, MA: The MIT Press. 

D., & Schwartz, B. (1979). Chunking in recall of symbolic drawings. Memory 
and Cognition, 17. 147-158. 

B .• & Reif, F. (1984). Effects of knowledge organization on task performance. 
Cognition and Instruction, 1, 5-44. 

:ieleirnt~~r, H. (1963). Realization of a geometry theorem proving machine. In E. A 
... Feigenbaum & J. Feldman (Eds.), Computers and Thought. New York: McGraw­

Hill Book Company. 

lldsltein I. (1973). Elementary geometry theorem proving. MIT AI Memo 280. 

J. G. (1976). Indefinite goals in well-structured problems. Psychological 
Rev,lew. 83, 479-491. 



Greeno, J. G. (1978). A study of problem solving. In R. Glaser (Ed.) Advances in 
Instructional Psychology, 1. Hillsdale, NJ: Lawrence Erlbaum Associates. 

90 

Greeno, J. G. (1983). Forms of understanding in mathematical problem solving. In S. 
G. Paris, G. M. Olson, & H. W. Stevenson (Eds.), Learning and Motivation in the 
Classroom. Hillsdale, NJ: Erlbaum. 

Greeno, J. G., Magone, M. E., & ({haiklin, S, (1979). Theory of constructions and set in 
problem solving. Memory & Cognition, 7, 445-461. 

Griggs, R. A., & Cox, J. R. (1982). The elusive thematic-materials effect in Wason's 
selection task. British Journal of Psychology, 16, 94-143. 

Holding, D. H. (1986). The Psychology of Chess Skill. Hillsdale, NJ: Lawrence 
Erlbaum Associates. 

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: 
Processes of Inference, Learning, and Discovery. Cambridge, MA: The MIT Press. 

Jeffries, R., Turner, A. A., Polson, P. G., & Atwood M. E. (1981). The processes 
involved in designing software. In J. R. Anderson (Ed.), Cognitive Skills and their 
Acquisition. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Johnson-Laird, P. N. (1983). Mental Models. Cambridge, MA: Harvard University 
Press. 

Koedinger, K.R., & Anderson, J.R. (1989). Perceptual chunks in geometry problem 
solving: A challenge to theories of skill acquisition. In Proceedings of the Eleventh 
Annual Conference of the Cognitive Science Society. Hillsdale, New Jersey: 
Lawrence Erlbaum Associates. 

Koedinger, K. R., & Anderson, J. R. (1990a). Abstract planning and perceptual chunks: 
Elements of expertise in geometry. Cognitive Science, 14, 511-550. 

Koedinger, K. R., & Anderson, J. R. (1990b). Theoretical and empirical motivations for 
the design of ANGLE: A New Geometry Learning Environment. Presented at the 

. AAAI Spring Symposium on Knowledge-Based Environments for Learning and 
Teaching, Stanford University, Palo Alto, CA. 

Kerf, R. E. (1987). Macro-operators: A weak method for learning. Artificial Intelligence, 
27,35-77. 

Larkin, J. (1988). Display-based problem solving. To appear in D. Klahr & K. Kotovsky 
(Eds.) Complex Information Processing: The Impact of Herbert A. Simon. Hillsdale, 
NJ: Erlbaum. 

Larkin, J., McDermott, J., Simon, D., & Simon, H. A. (1980a). Expert and novice 
performance in solving physics problems. Science, 208, 1335-1342. 

Larkin, J., McDermott, J., Simon, D., & Simon, H. A. (1980b). Models of competence in 
solving physics problems. Cognitive Science, 4, 317-348. 

J., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand 
words. Cognitive Science, 11, 65-99. 

,esg,eld. A. M., Lajoie, S., Bunzo, M., & Eggan, G. (1988). Sherlock: A coached 
practice environment for an electronics trouble shooting job. LRDC Report. 
Pittsburgh, PA: University of Pittsburgh. 



Neves, D. M. (1978). A computer program that learns algebraic procedures. 
Proceedings of the 2nd Conference on Computational Studies of Intelligence, 
Toronto. 

Nevins, A. J. (1975). Plane geometry theorem proving using forward chaining. 
Artificial Intelligence, 6, 1-23. 

Newell, A. (1973). You can't play- 20 questions with nature and win: Projective 
comments on the papers of this symposium. In Chase, W. G. (Ed.), Visual 
Information Processing. New York: Academic Press. 

Newell, A. (1990). Unified Theories of Cognition. Harvard University Press, 
Cambridge, MA. . 

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: 
Prentice-Hall. 

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto, CA: Tioga 
Publishing Co. 

Patel, V. L, & Groen, G. J. (1986). Knowledge based solution strategies in medical 
reasoning. Cognitive SCience, 10, 91-116. 

Polk, T. A., & Newell, A. (1988). Modeling human syllogistic reasoning in Soar. 

91 

Program of the Tenth Annual Conference of the Cognitive Science Society. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Reiser, B. J., Friedmann, P., Gevins, J., Kimberg, D. Y., Ranney, M., & Romero, A. 
(1988). A graphical programming language interface for an intelligent LISP tutor. 
Proceedings CH1'88. 

Rips, L.J., (1983). Cognitive processes in propositional reasoning. Psychological 
Review, 90, 38-7" 

Romberg, TA & NCTM Commission on Standards for School Mathematics (1987). 
Curriculum and evaluation standards for school mathematics. Working draft of the 

- commission on standards for school mathematics of the National Council of 
Teachers of Mathematics. Reston, VA: NCTM. 

Rosenb,llo 10m P. S., Laird, J. E., & Newell, A. (1987). Knowledge level learning in 
Soar. In Proceedings of the Sixth National Conference on Artificia/intelligence, 
499-504. 

5ac:erd!oti. E. D. (1974). Planning in a hierarchy of abstraction spaces. Artificial 
Intelligence, 5, 115-136. 

Siml,n H. A., & Gilmartin, K. J. (1973). A simulation of memory for chess poSitions. 
Cognitive Psychology, 5, 29-46. 

M., & Good, R. (1984). Problem solving and classical genetics: successful vs. 
unsuccessful performance. Journal of Research in Science Teaching, 21, 895-
912. 

, J., Mawer, R. F., & Ward, R. W. (1983). Development of expertise in 
mathematical problem solving. Journal of Experimental Psychology: General, 112, 
639-661. 



Sweller, J. (1988). Cognitive load during problem solving: effects on learning. 
Cognitive Science, 12, 257-285. 

Sweller, J., & Cooper, G. (1985). The use of worked examples as a substitute for 
problem solving jn learning algebra. Cognition and Instruction, 2, 59-89. 

92 

Unruh, A., Rosenbloom, P. S., & Laird, J. E. (1987). Dynamic abstraction problem 
solving in Soar. In Proceedings of the AOGIAAAIC Joint Conference, Dayton, OH. 

Voss, J., Vesonder, G., & Spilich, G. (1980). Text generation and recall by high­
knowledge and low-knowledge individuals. Journal of Verbal Learning and Verbal 
Behavior, 19, 651-667.-

Wason, P. C. (1966). Reasoning. In B. M. Foss (Ed.) New Horizons in Psychology. 
Harmondsworth: Penguin. 

Witkin, H. A., Oltman, P. K., Raskin, E., & Karp, S. A. (1971). A Manua/forthe 
Embedded Figures Tests. Palo Alto, CA: Consulting Psychologists Press. 



APPENDIX A 

This appendix includes the materials used in this study: 

Handouts: Rule Summary Sheet, Tracking Sheet, Concept Summary Sheet 
(ANGLE group only). ANGLE Text (ANGLE group only), GPT Text 
(GPT group only). . 

Tests: Proof Construction A&B, Hidden Figures A&B, Truth Judgment 
A&B, and Proof Checking A&B. 

92 



RULE SUMMARY SHEET 

DEF-PERP: 

rt':::ABC 

CONG-ADJ- ':::ABC:: ':::ABD 

ANGS: <:=:>.L 
AB CD 

CORRES­
PARTS: 

SSS: 

SAS: 

AABC : AXYZ 

jiJj:: iN, BC :: n, EA:: lX, 
.:::ABC :: ':::XYZ, ':::BCA .. ':::YZX, 
':::CAB .. .:::z XY 

AB;: xv, BC:: YZ, andAc: i<Z 
=:> 
AABC:AXYZ 

AABC::AXYZ 

':::BAC ;: ':::YXZ, AC : XZ, ':::ACB :: ':::XZY 

=:> 
AABC : AXYZ 

':::BAC:: ':::YXZ, ':::ACB;: ':::XZY, BC:: Yi! 

AABC: AXYZ 

Segment AB is in the diagram 

C~D 
B 

C~D 
B 

B Y 

,L.1 ~z 

.. 



More Detailed Rule Review: 

DEF-PERP: 
Two Jines are perpendicular, Ali .L CD, 

ifjl they form right angles, rt,""ABC and rt,""ABD. 

CONG-ADJ-ANGS: 
Angles formed by connecting lines are 
congruent, ,""ABC Iii ,""ABO, 

iff the lines are perpendicular, AB .L co. 

CORRES-PARTS 
If two triangles are congruent, AABC ;: AXYZ, 

then all the corresponding sides are congruent: 

SSS: 
[f 

A8 = lN, Be .. YZ, and CA .. fl<, and all the 
corresponding angles are congruent: ,""ABC .. 

,""XYZ, ,""BCA :: ,""YZX, and ,""CAB!! ,""ZXY. 

three sides of one triangle, AB, BC, and AC, 
are congruent to the corresponding sides of 
another triangle, I<V, VZ, and xz, that is, Ali Iii 
lN, BC = 'i'Z, and AC ;: xZ, 
the triangles are congruent: AABC Iii AXYZ. 

two sides and the included angle of one 
triangle, AB, BC, and ,""ABC, are congruent to 
the corresponding parts, xV, YZ, and ,""XYZ, of 
another triangle, that is, AB Iii xV, Be Iii 'i'Z, and 
,""ABC Iii ,""XYZ, 

n the triangles are congruent: AABC ;: AXYZ. 

,LD 
B 

,LD 
B 

means if and only if and indicates the rule can be applied in both directions. For 
the DEF-PBRP rule is really two rules: 1) If two lines are perpendicular then 

right angles and 2) If two lines form right angles then they are 



ASA: 
If 

then 

AAS: 
If 

then 

two angles and the included side of one 
triangle, 4ABC, 4BCA, and Be. are congruent 
to the corresponding parts. 4XYZ. 4YZX, and 
YZ, of another triangle, that is, 4ABC s: 4XYZ, 

4BCA = 4YZX, and BC s: n, 
the triangles 'are congruent: AABC :: AXYZ. 

two angles and a non-included side of one 
triangle, 4ABC, 4Bt:A, and AB, are congruent 
to the corresponding sides of another 
triangle, 4XYZ, 4YZX. and xV, that is, 4ABC = 
4XYZ,4BCA :: 4YZX. and AB s: XV. 
the triangles are congruent: AABC = AXYZ. 

REFLEXIVE: 
If segment AB appears in the diagram, 
the n AB s: Ali. Lbo 

B 



Tracking Sheet 

Name: __ -,-__ _ Date started: ____ _ 
Id#: __ 

Here are the things you'll be doing as you work through the tutor. 
Please use this sheet to keep track of what you've done, so that 
when you come in qn the next day you'll know where you left off. On 
the following page, please record the time spend with the tutor on 
each day and which problems you did on that day. 

Please check off each problem as you do it. 

1. Review DEF-PERP. 
2. Do problems: 

[1 PROB150 
[1 PROB152 

3. Review cONG-ADJ-ANGS. 
4. Do problems: 

[ 1 N1 
I: 1 PROB151 
[ 1 P1 
I: 1 N2 

5. Review COR RES-PARTS. 
6. Do problem: 

[1 N3 
7. Review SSS, SAS, ASA, and AAS. 
S. Do problems: 

[1 PROB310 
[ 1 N4 
[ 1 N5 
[ 1 P5 

9. Review REFLEXIVE. 
10. Do problems: 

[1 PROB311 
[1 PROB352 
[1 PROB353 
[1 N7 
[] P2 
[] P3 
[] N16 
[] N17 

[ ] P6 
[ 1 P7 
[ ] PS 

[ ] N15 
[1 N9 
[] NS 
[] N10 
[ ] N11 
[] N12 
[ 1 N13 
[ ] N14 



DAY START FINISH TIME PROBLEMS COMPLETED 
TIME TIME SPENT 

1 

2 

3 

4 

5 

6 



A 

c 

P80B15Q 

GIVENS: CA.L DE 

GOAL: rt.LABE 

P80B152 

GIVENS: rt.LCDA 

GOAL: DE.L fA 

GIVENS: .LJKH:: .LLKH 

GOAL: rt.LLKH 

"'" GIVENS: AABC:: AEFG 

~ GOAL: AB iii EF 
E G 

GIVENS: .LFGH :: .LKLH 
GF = LH 
GHiii[K 

GOAL: .LOFH:: .LLHK 

P80B151 

D 
GIVENS: AB.L ED 

A.---lB GOAL: .LABD:: .LEBA 

S GIVENS: .LRPQ iii .LSPQ 

GOAL: RS::Q" 

N 

JHP 

K Q 

L R 

GIVENS: KQ.L PR 
rt.LJKQ 

GOAL: .LJKQ:: .LLKQ 

P80B31Q 

G D GIVENS: CD:: FG 

G~ ~:~~ 
FEe GOAL: AGFE iii ADCA 

x 
!:1Q 

GIVENS: .LAXB = .LCXD 
Bxiiicx 
.LABX :: .LDCX 

GOAL: XI'.:: XD 



~ 
GIVENS: AJK" 5 AJP" 

,",KL" 5 ,",LOP 
,",L"K 5 ,",P"O 

ALK"::AOP" 

GIVENS: ,",LGH 5 ,",S"P 
GJ5"Q 
AKHJ5ARPQ 

GOAL: ,",JLG 5 ,",QS" 

GIVENS: WY 5 Y'i. 
WX5XZ 

GOAL: AWXY 5 AZXY 

f'BOB353 

!=J<"----.,A GIVENS: ,",CEO 5 ,",ACE 
,",AEC 5 ,",DCE 

GOAL: DC SEA 

GIVENS: APSR 5 APQR 

GOAL: AWSR:: AWQR 

B E9. 
GIVENS: AABD 5 AEFH 

ABCD 5AFGH 

GOAL: AABC 5 AEFG 
AL--1I.t.-__ ~ 

C 

GIVENS: ABCD 5 A YZW 
AC5XZ 
,",DBA 5 '"' WYX 

GOAL: ,",ADB 5 ,",XWY 

AL--~ l:-:---.3W 

PROB352 

W\"7"\ . GIVENS: XW 5 ZY 

~ wz5XY 

Y GOAL: ,",XYZ:= ,",ZWK 

J~---IK 

c 

GIVENS: J[ 5 JK 
,",LJK :: ,",HJK 

GOAL: LH J. JK' 

GIVENS: ADAC 5 ABCA 
,",AKD 5 ,",BKC 

GOAL: AAKD 5 ACKB 



GIVENS: LAEB = LCEO 
A LABCiLoCB 

BA:CO 

GOAL: AABC: AOCE 

!:J.1§. 
G GIVENS: AC i BO 

AO:OC 
LFAB ELGCB 
AF:CG 

GOAL: LAFB E LCGB 

GIVENS: rtLLQR 
LPHR=LPRH 

GOAL: LHLP: LRLP 

GIVENS: AC!iii BC 
AK:BK 

GOAL: rtLAOC 

GIVENS: .JQ: KQ 
..IF: KG 
L.JFG: LKGF 

GOAL: FQ!iii GQ 

M"'"----l( 

K 

GIVENS: ;rn 5 HL 
MH : ilK 
L.JHK !iii LMHL 

GOAL: A.JKL: ALM.J 

GIVENS: KG: KH 
Ai:: G.J 
LKG.J :: LKHF 
LFGK : L.JHK 

F G H J GOAL: LFKG:: LHK.J 

M A D 

N14 

GIVENS: DE !iii EB 
LAED: LBEC 
LAOB: LCBD 

GOAL: AB:CD 

GIVENS: LCAD: LBOA 
LBAD:LcOA 

GOAL: AB:CO 

C GIVENS: AC: AD 
CK'eDK 

GOAL: LBCK !iii LBDK 



CONCEPTS~YSHEET 

PERPENDICULAR-ADJACENT-ANGLES 

Confi guration: 

Whole-statement: 

Part-s tatements: 

Ways-to-prove: 

PERPENDICULAR-CROSS 

Configuration: 

Whole-statement: 

Part-statements: 

Ways-to-prove: 

1. rt ..lABO 
2. rt ..lCBO 
3 • ..lABO 5 ..lCBO 

OEFepERP: (1) (2} 
COMGeAOJeAMGS: (3} 

.+. 
c 

AfJ.iID 

t. rt ..lAXB 
2. rt ..lBXC 
3. rt ..lCXO 
4. rt ..lAXO 
5 • ..lAXB:: ..lBXC 
6 • ..lBXC 5 ..lcxo 
7 • ..lCXO:: ..lAXO 
8 • ..lAXO:; ..lAXB 

OEF-PERP: {t} (2} {3} {4} 
COMGeAOJ-AMGS: {5} {6} {7} 
{8} 



CONGRUENT-TRIANGLES 

Configuration: 

Whole-s-tatement: 

Part-statements: 

Ways-to-prove: 

Other related rules: 

I.AB 5 XV 
2.BC 5 n 
3. i:Ai5 zx 
.... .;:::B5.;:::V 
5.';:::C i5';:::Z 
6.';:::A 5';:::X 

SSS: {1 23} 
SAS: {1 ... 2} {2 5 3} {3 6 1} 
ASA: {1 ... 6}{2 ... 5} {3 5 6} 
AAS: {1 ... 5} {1 56} {2 ... 6} 

{25 6} {3 ... 5} {3 ... 6} 

CORRES-PARTS 

CONGRUENT·TRIANGLES-SHARED-SlDE 

Configuration: 

Whole-statement: 

Part-statements: 

Ways-to-prove: 

Other related rules: 

w 

I. xv i5 xz 
2.vw5zw 
3.';:::V 5';:::Z 
.... .;:::vxw 5 ,;:::zxw 
5 • .;:::XWV 5 .;:::XWZ 

SSS: {1 2} 
SAS: {1 ... } {2 5} 
ASA: { ... 5} 
AAS: {3 ... } {35} 

CORRES-PARTS 
REflEXIVE 



diagram does not appear to be a great difficulty, especially in comparison to the 
difficulties that arose from allowing and sometimes encouraging the explicit whole­
statement encoding step. 

4.1.2 Improving, Tutoring Messages and Strategies 

81 

4.1.2.1 Adding Buggy Ways-to-prove. One of the problems with ANGLE's tutoring 
messages was that the execution" feedback was quite simple and sometimes 
misleading. In particular, this feedback did not respond well to common bugs, like 
trying to prove triangles congruent USing two sides and a non-included angle. These 
situations are captured in GPT by matching them against particular -buggy" production 
rules. A similar thing can be done in ANGLE by elaborating the schema 
representation to include buggy ways-to-prove in addition to the existing (non-buggy) 
ways-to-prove. Tutoring messages can then be attached to these, just like they are 
attached to buggy rules in GPT. 

4.1.2.2 What's the Proper Role of Execution Training? One important question that 
was considered before the study and still remains unanswered is: what is the proper 
role of execution training? One could take the view that proof instruction in high 
school geometry should emphasize proof planning and not be too concerned about 
proof execution, that is. whether students get the formal details exactly right. In fact, a 
recent proposal for high school standard suggests a deemphasis on formal proof and 
more emphasis on informal proof (Romberg, 1987). However, at least for comparison 
sake, it seemed important that the two groups (ANGLE and GPT students) be tested on 
the same standard two-column format. Thusi it also seemed important to give training 
within ANGLE on execution as well as proof planning. 

Following the cognitive model, ANGLE's feedback scheme always suggests . 
planning moves first and only suggests execution moves once a complete plan has 
been found. However, consistent with the effort to make the system flexible, ANGLE 
allows students to integrate planning and execution. In fact, students rarely completed 
planning before beginning execution. One measure of this is the percent of inferences 
that occurred after execution began, but before planning was finished. Thus, for 
eXample, if all the planning is done first this percentage should be O. On average, 
47"k of students' inferences were in this mixed stage. Students' tendency to mix 
planning and execution was not quite significantly correlated with post-test 
performance (p = .06). However, the pattern is that the students who began execution 
early also scored better on the post-test. This is probably a reflection of students' prior 
familiarity with the execution space and the good students' better facility with it. 

Another Issue relating to the role of the execution training in ANGLE, is the 
·.~~~:~~1:~ to the interface that It added. Again such complexities presented 
.$ with a learning task that distracted them from geometry. 

A couple of possibilities may be pursued with respect to this issue. One is to 
the execution training from ANGLE and simply focus on tutoring proof plans. 

Would be interesting to see how such instruction would transfer to the task of coming 
with a completely detailed two-column proof. Another possibility is to have the tutor 

IntQ,rce the planning first approach of the cognitive model. Only after completing a 
would students be allowed to do the proof execution. 



4.2 IMPROVING KNOWLEDGE MEASURES 

4.2.1 Improving the Truth Judgement Test 

82 

It was hoped that the Truth Judgment test would measure students' planning abilities 
in a way that wouldn't be masked by lack of execution abilities. Having such a test is 
still desirable. however, as it turned out students did not appear to spontaneously see 
the relevance of proof planning to answering Truth Judgment items. Part of the reason 
may be due to the fact that as YES-NO type questions these items had the appearance 
of being easy, and thus, perhaps it did not occur to students that anything as difficult as 
doing proof planning would be relevant. In addition, students were given only 15 
minutes to do the 17 items on this test (in fact, most finished in about 10 minutes). Four 
of these items could be solved with proofs about as difficult as the four proof problems 
on the Proof Construction test which students were given 35 minutes to solve. In other 
words, students really didn't have time to do proofs to help solve these problems. 

A number of things cen be done to encourage proof planning. First, an illustration 
should be given to students. prior to taking the test, of how planning a proof can help 
answer these questions. Second, fewer problems should be given with more time 
allowed for each. It Should be emphasized to students that they have lots of time to 
think hard about each one of the items. Third, students can be asked to give a reason 
for their answer. In the case that they answer YES, they should provide a proof sketch. 
In the case that they answer CAN'T TELL, they should provide a counter example. 
Examples of both types of reasons should be given prior to the test. 

4.2.2 The Need for a Measure of Schema Knowledge 

Both GPT and ANGLE are primarily focussed on teaching the process of constructing 
proofs and not on teaching the declarative knowledge of the basic operators, rules in 
the case of GPT and schemaslconcepts in the case of ANGLE. To the extent that 
students don't have a reasonable grasp of this basic knowledge. they are likely to 
have trouble. This situation is potentially more problematic in ANGLE because the 
units of declarative knowledge in ANGLE, the concepts: (1) are not explicitly taught in 
the standard curriculum and (2) are much bigger than the formal rules which are the 
declarative knowledge units in GPT. It seems possible that the effectiveness of 
ANGLE might interact with the level of students' prior knowledge of the concepts. 
Thus, it seems important to have a measure of this knowledge. 

Such a test might be made up of items, much like the easy items on the Truth 
Judgment test, in which the student is given a diagram configuration and some facts 
about it, and asked if a particular conclusion follOWS. One type of item would test 
knowledge of the part-statements by providing the whole-statement as the given and a 
possible part-statement as the goal. Another type of item would test knowledge of the 
ways-to-prove by providing sets of part-statements as the givens and the whole­
statement as the goal. 

4.3 RESEARCH SUMMARY 

final section provides a recap of the research agenda carried out in this thesis. 
Ho~vevler, rather than simply summarizing. I've attempted to generalize the key steps 

present them as a prescription for tutor deSign. Certainly there are other 
motivated routes to successful tutor deSign, not to mention getting there 



83 

by good intuitions or serendipity. This prescription is provided merely as one possible 
route that may (1) be directly applied in some domains or (2) be used as a departure 
point for developing related approaches in other domains. 

The approach CIln characterized in five steps: 

1. Identify the execution space. 
2. Look for implicit planning in verbal reports. 
3. Model this implicit planning. 
4. Use the model to drive tutor design. 
5. Tune the tutor implementation. 

Below I discuss the significance of each step, suggest how it might be done in 
general, and review how it was done in this project. 

4.3.1 Identify the Execution Space 

This step sets the stage for step 2 where one looks for underlying problem solving 
processes that are effectively hidden in current instruction. First, we need to know 
what aspects of the problem solving process are revealed, at least implicitly, by current 
instruction. This is the task of identifying the execution space. The execution space for 
a domain is the problem space most directly induced from the way problem solution 
steps are typically or conventionally written down 1. In other words, the operators of 
this space correspond one-to-one with the written problem steps. 

As discussed in Section 1.1, the execution space operators for geometry are the 
various definitions, postulates, and theorems that appear as the "reasons' in the steps 
of the conventional two-column proof format. The execution space operators for 
algebra equation solving are the various rules (e.g., You can add the same number to 
both sides) for manipulating equations. In physiCS problem solving (e.g., the kind 
analyzed by Larkin, et. al., 1980), the execution space operators might be the relevant 
physics formulas . 

. Another potential guide to the operators of the execution space is to look at the 
units of knowledge that are provided to students in their textbooks or lectures. Quite 

. often, these units of knowledge correspond with the written problem steps. For 
example, the traditional geometry curriculum is organized around presenting and 
illustrating the very same rules that appear as reasons in two-column proof solutions. 
A similar situation is apparent in algebra and physics. 

A straight-forward way to model problem solving in these domains is as a heuristic 
search in the execution space - the only trick is to find appropriate operator selection 
heUristics. From the perspective of a student, to the extent that the execution space 
provides a good characterization of skilled problem solving, his or her leaming job is 

easier. By definition, execution operators can be induced fairly directly from the 
of worked out examples and may be supported by verbal descriptions in 

te:~e~:~~ and lectures. For example, consider algebra equation solving. An example 
•. 11; out solution is shown in Table 4.1. 

1Newell and Simon (1972, p. 144) refered to a 'basic problem space" and gave examples of one in a 
domains. It is evident from their examples that what they meant by a basic problem space is 

.mlf::or." what I mean by an execution space, however. they did not explicitly define il. 



Table 4.1 An worked solution in the domain of Algebra equation solving. 

3x - 13 

3x - 13 

2 (x - 3) 

; 2x - 6 

3x - 13 - 2x = - 6 

3x - 2x - 6 + 13 

x = 7 

Distribute 

x'a to left side 

N~'s to right side 

84 

In this domain, the execution operators can be fairly directly induced from the steps 
in worked out examples like that in Table 4.1. This claim is supported by the fact that 
an early machine learning program did exactly that (Neves, 1978). In addition, the 
general difference-reduction heuristic turns out to be an effective means of operator 
selection. Because this domain independent weak-method works in this domain, 
learning operator selection is relatively easy. 

While heuristic search in the execution space is a straight-forward candidate for 
modeling problem solving in a domain, it may not be the problem space that skilled 
problem solvers typically use in this domain. The next step is to see if it is or not. 

4.3.2 Look for Implicit Planning In Verbal Reports 

The purpose of this step is to identify the nature of skilled problem solving in the 
domain and in particular, to see if it deviates from heuristic search in the execution 
space. To do so, one can collect concurrent verbal reports (Ericsson & Simon. 1984) 
of skilled subjects solving problems in the domain. As Ericsson & Simon point out. 
subjects should not explain what they are doing, but merely report what they are 
thinking. To the extent that heuristic search in the execution space provides a good 

. model, subjects' successive verbalizations should correspond with successive states 
in the execution space. 

However. subjects' verbalizations could deviate from the execution space in a 
number of ways: 

1. Multiple execution steps might be aggregated into a single 
verbalization. 

2. Successive verbalizations may skip steps in the execution 
space. 

S. Verbalizations may not specify an execution state in full detail, 
but rather only indicate some abstract feature(s) of it. 

Regularities in such deviations suggest "thinking steps' which are not represented 
the execution space. From the perspective of the student, these thinking steps are 
impliCit part of the planning process which, in contrast to the execution operators, 

tt!:!,nn,,,t be directly induced from worked out examples. In other words, when there is . 
Jrnp,licit olSI1nifla In the thinking of skilled problem solvers, there may be aspects of a 
~\.lCi::essful proble,m solving method which are hidden in the traditional curriculum. 

In Section 1.2, I showed that skilled geometry problem solvers skip steps in 
!xeciuticm space (#2 above) while developing an initial proof plan. The knowledge 

allows them to do so is hidden In the geometry curriculum. While it is probably 
ble to induce the execution operators from the steps of worked out geometry 



85 

proofs in similar fashion to Neves' (1978) program for Algebra, it is not possible to 
apply a general weak-method like difference-reduction or means-ends analysis to 
effectively perform operator selection in the execution space of geometry. As the step 
skipping in the verbal reports suggests, successful search in geometry involves 
operators other than those in the execution space. 

It is possible that no evidence for implicit planning is found in a domain. in other 
words, skilled subjects work in the execution space. This seems likely in the domain of 
algebra equation solving. In such a case, building a tutor for this domain may be 
inappropriate. Conventional instruction may be adequate. In other words, finding no 
implicit planning would suggest that the conventional written display of problem 
solving sleps corresponds fairly well with the thought steps necessary for successful 
problem solving in that domain. In this case, well-motivated students may not have 
much trouble in inducing the necessary operators. A cognitively-based intelligent 
tutoring system (ITS) is unlikely to be much different from conventional instruction and 
thus, unlikely to help much. In fact, an ITS for algebra equation solving has been 
compared with a conventional classroom and although students learn with this tutor, 
they don't learn any better than students in a normal classroom (J. R. Anderson. 
personal communication). 

4.3.3 Model this Implicit Planning 
If evidence for implicit planning is found. the question becomes what is the knowledge 
that is responsible for the non-execution space inferences? I can offer no sweeping 
generalizations for how to come up with the elements for a model of implicit planning. 
I can only say that the diagram configuration schemas described in Section 1.3.1, 
evolved from an initial attempt to apply ideas about abstract planning and abstract 
problem spaces (Sacerdoti, 1974; Newell & Simon, 1972). In particular, the first 
attempt at a model was based on applying the Idea of equivalence classes as a way to 
collapse nearby problem states into one. 

In the case of verbalization types (1) and (2) above, it is possible that the implicit 
planning knowledge is the result of composing execution operators. In section 1.6.3, I 
argued against a macro-operator interpretation of the genesis of DC-schemas. In the 
process, a number of potentially general criteria were used to distinguish macro­
operators deriVed from execution operators from operators that merely bear a macro­
operator relationship with the execution operators. In the case of verbalization type 
(3), the abstract problem space ideas are likely to be relevant. For example, Newell 
and Simon's (p. 152, 1972) augmented problem space for crytarithmetic provides a 
model of such verbalizations (e.g .. abstract features of states like the number must be 
even). 

4.3.4 Use the Model to Drive Tutor Design 
... Once an accurate model of implicit planning has been developed the challenge is 

." to find a way to communicate this model to students. This issue is discussed in 

. Section 2.1. Since people seem to learn best by doing, directly communicating it to 
doesn't usually help much. By design, this model contains problem solving 

Drnr"",C! that are not reflected in the notation of the current curriculum. Thus, it is 
nec:ess;ary to invent new notations which reily the previously hidden structures and 
·pr~~~~~~; These notations can be the basis for interface design. For example, 
;.(1 configuration schemas became the basis for the icons in ANGLE's concept 

and for the representation of concept instances in the proof graph. In addition, 

• 



86 

the computer medium affords the possibility of inventing novel actions which can more 
directly reify the processes of the model. For example, the interface actions for 
selecting a schema instance from the problem diagram reify the diagram parsing 
process (see Sectio~ 2.3.2 and Figure 2.2). 

The goal of the design of tutoring strategies and messages should be to support 
and articulate the problem solving method. In ANGLE, the tutoring strategy of 
focussing on the schema level as the proper grain size for next-step advice is intended 
to support the learning of the diagram configuration space (see Section 2.4.4 and 
Figures 2.13-15). The use of terms like ·concept", ·part-statement", and "ways-to­
prove" is intended to articulate crucial aspects of this novel notation. 

4_3.5 Tune the Tutor Implementation 

While cognitive models can guide the design of the interface and tutoring components, 
the process of implementing these guidelines is still somewhat of a black art. Thus, it 
is important to test and tune the implementation. What seems right intuitively may not 
be effective. In addition. because of the great complexity of such systems. all possible 
interactions cannot be anticipated. Long periods of use by multiple students is the 
only way to ·shakedown" possible unanticipated interactions. 

Two examples from the preliminary study are most notable. First. there was the 
problem with bottom-out hints and more generally. with the conflict between interface 
flexibility and user confusion. Intuitively it had seemed that learning would be 
facilitated by both (1) always requiring students to enter proof steps even in the case 
that the tutor has told them what to do. and (2) always allowing students the flexibility 
to ignore hints, for example. if they had something else they wanted to do. These two 
notions led to the fact that students were able to ignore ANGLE's bottom-out hints. 
Perhaps in part because the interface was not clear enough and in part because the 
wording of the bottom-out hints was conceptually focussed rather than interface 
focussed, students ignored these hints much more often and for a longer period of time 
than was expected. 

Second. there was the problem with whole-statement encoding. Here again, there 
Viere apparently well-motivated goals to (1) maximize the student's involvement, that 
is, by not doing the whole-statement encoding step for them, and (2) allow flexibility, 
that is, allowing students to either explicitly perlorm or skip this step. However, the 
result was, on one hand, added complexity to the interlace with little or no added 
instructional impact and, on the other hand, an interaction within the generic hinting 
scheme that resulted in a confusing tutor message. 

= 



87 

CONCLUSION 

This thesis illustrates a program of basic and applied research that started by 
understanding the nature of a complex problem solving domain and next, applied this 
new understanding to the development of improved instruction for that domain. This 
instruction comes in the form of an intelligent tutoring system called ANGLE. 

I conclude by reviewing the general contributions of this thesis as stated in the 
introduction: 

1. A new methodology for verbal protocol analysis involving the identification of 
step-skipping with respect to the execution space of a domain. 

In Section 1.1, I defined the execution space as the problem space that 
corresponds one-to-one with the steps that problem solvers conventionally write down 
in solving problems in that domain. I showed how one could use the execution space 
of a domain as the basis for analyzing verbal reports of subjects solving problems in 
that domain. By looking for step-skipping with respect to the execution space (see 
Section 1.2), one can identify implicit planning (Le., thought that is not represented in 
the conventional notations of the domain) and take a step toward both a deeper 
understanding of the domain and a promising approach to improved instruction. 

2. A new theory of geometry expertise (DC) that accurately describes human 
behavior, has an efficient computer implementation, and pulls together a 
number of empirical results on the nature of human expertise. 

In Section 1.3, I described DC, a model of skilled geometers informal and intuitive 
proof planning skills. This model is based on knowledge components, diagram 
configuration schemas, which merge perceptual knowledge about important geometric 
categories, conceptual knowledge about the properties and sufficiency conditions of 
these categories. and rule knowledge of how these categories relate to the formal 
language of geometry. Section 1.4 established the computational power and empirical 
accuracy of the model. Section 1.6.2 showed how DC's perceptually-based schemas 
provide both a delailed explanation of experts' ability, in certain domains, to solve 
relatively simple problems by pure forward inferencing and an integration of the 
empirical results indicating experts' superior problem-state memory and their superior 
problem solving effectiveness. 

3. A detailed characterization of the end-state of a complex learning process 
that challenges current learning theories and that can be used as a test-case 
for new learning theories. 

In Section 1.6.3, I discussed how straight-forward applications of learning theories 
as ACT* or Soar are unlikely to produce the regularity in knowledge organization 

',rel:lecled by DC's schemas. In particular, this regularity seems to exclude deductive or 
Wlnbcl!-Ielvel learning processes which acquire expertise through the composition of 
,"""'''Ulmn space operators. Rather, it seems more likely that DC schemas (and 

perceptually-based planning schemas in general) are learned through 
"U~I"II\'e or knowledge-level learning processes. These inductive learning 
mech~lnj".m" would include a perceptual chunking process capable of creating ever­

diagram configurations (percepts in general terms), and a categorization 

• 



process capable of attaching part-statements (properties) and ways-to-prove 
(sufficiency conditions) to these percepts. 

88 

The fact that novice problem solvers exhibited DC-like step-stepping on the proof 
pre-test (see Section 3.3.2) provides further evidence that learning in geometry 
doesn't start with 'the execution space and then improve on this representation through 
composing operators. Rather, very early in the learning process, these novices 
appear to have acquired some non-execution operators that, though sometimes 
erroneous, bear a closer similarity with DC schemas than with the formal rules of 
geometry. 

4. A theory-based approach to the design of the interface and tutoring 
components of an intelligent tutoring system (ANGLE). 

In Chapter 2, I showed how a cognitive model of implicit planning (DC) could be 
translated into design specifications for the interface and tutoring components of an 
intelligent tutoring system. Perhaps the most important aspect of this approach is how 
a model of implicit planning can be used to design novel interface notations and 
actions. By definition, a model of implicit planning must make use of representations 
and processes that are not represented in the current notation of the domain. Thus, 
with a model of implicit planning in hand, the tutor designer can use it to guide the 
invention of new notations that more accurately reflect the processes of skilled 
problem solving. As part of a tutor's interface, these notations deliver instruction 
implicitly by providing students with a more cognitively meaningful way to think about 
the domain. 

5. An initial test of the hypothesis that the development of more accurate and 
powerful cognitive models of problem solving can lead to major 
improvements in the instruction of problem solving, particularly within the 
context of an intelligent tutoring system. 

While there have been numerous successful examples of applying cognitive 
science to instructionai design (e.g., Anderson, et. aI., 1990). these have been cases of 
comparing traditional (non-cognitive) instruction with cognitively-based instruction. 
These studies show the impact of designing instruction based on a cognitive model 
rather than on intuitions. The hypothesis above poses a more detailed question: Do 
better cognitive models lead to better instruction? 

. By testing this hypotheSis in the medium of intelligent tutoring systems, we can 
have both control over the exact nature of the instruction that is delivered (which is 

to do with human teachers) and maintain some of the on-line flexibility of a 
nurnan teacher (which cannot be done with text-based instruction). While the 
. DrE!,lim,in!o'rtI study described in Chapter 3 did not conclusively affirm or negate this 
hvo'~th<~",i" it moves us a step closer. Despite the fact that much less effort has been 

""~'ULC: to this point, it is about equal in instructional effective ness to the 
"~~,~~~~:!, successful Geometry Proof Tutor. The hope is that by eliminating the 
Ir( with ANGLE's implementation and expanding its curriculum, we can exceed 

effectiveness of GPT and confirm the hypothesis. 



REFERENCES 

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard 
University Press. 

89 

Anderson, J. R. (1988). The exper:t module. In M. C. Polson & J. J. Richardson (Eds). 
Foundations of Intelligent Tutoring Systems. Hillsdale, NJ: Lawrence Erlbaum 
Associates. 

Anderson, J. R., Boyle, C. F., & Yost, G. (1985). The geometry tutor. In Proceedings of 
the International Joint Conference on Artificiallntelligence-85. Los Angelos: IJCAI. 

Anderson, J. R., Boyle, C. F., Corbett, A., & Lewis, M. (1990). Cognitive modelling and 
intelligent tutoring. Artificial Intelligence, 42, 7-49. 

Anderson, J. R., Greeno, J. G., Kline, P. J., & Neves, D. M. (1981). Acquisition of 
problem-solving skill. In J. R. Anderson (Ed.), Cognitive Skills and their Acquisition. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group 
instruction as effective as one-to-one tutoring. Educational Researcher, 13.3-16. 

Braine, M. D. S. (1978). On the relation between the natural logic of reasoning and 
standard logic. Psychological Review, 85, 1-21. 

Brown, J. S. & Burton, R. R. (1982). An investigation of computer coaching for informal 
learning activities. In Intelligent Tutoring Systems. Ed. by Sleeman, D. & Brown, J. 
S. London: Academic Press. 

Bonar, J. G., & Cunningham, R. (1988). Intelligent tutoring with intermediate 
representations. Paper presented at ITS-88. Montreal. 

Chase, W. G., & Simon H. A. (1973). The mind's eye in chess. In W. G. Chase (Ed.) 
Visual Information Processing. New York: Academic Press. 

Cheng, P. W., & Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cognitive 
Psychology, 17,391-416. 

De Groot, A. (1966). Perception and memory versus thought Some old ideas and 
recent findings. In B. Kleinmuntz (Ed.), Problem Solving. NY: Wiley. 

Ericsson, K. A., & Simon, H. A. (1984). Protocol Analysis: Verbal Reports as Data. 
Cambridge, MA: The MIT Press. 

Egan. D., & Schwartz, B. (1979). Chunking in recall of symbolic drawings. Memory 
ana Cognition, 17, 147-158. 

Eylon, B., & Reif, F. (1984). Effects of knowledge organization on task performance. 
Cognition and Instruction, " 5-44. 

Gelernter, H. (1963). Realization of a geometry theorem proving machine. In E. A. 
Feigenbaum & J. Feldman (Eds.), Computers and Thought. New York: McGraw­
Hill Book Company. 

~.G()lds:tein I. (1973). Elementary geometry theorem proving. MIT AI Memo 280. 

J. G. (1976). Indefinite goals in well-structured problems. Psychological 
Hel/lew. 83, 479-491. 



Greeno, J. G. (1978). A study of problem solving. In R. Glaser (Ed.) Advances in 
Instructional Psychology, 1. Hillsdale, NJ: Lawrence Erlbaum Associates. 

90 

Greeno, J. G. (1983). Forms of understanding in mathematical problem solving. In S. 
G. Paris, G. M. Olson, & H. W. Stevenson (Eds.), Learning and Motivation in the 
Classroom. Hillsdale, NJ: Erlbaum. 

Greeno, J. G., Magone, M. E., & Ghalklin, S. (1979). Theory of constructions and set in 
problem solving. Memory & Cognition, 7, 445-461. 

Griggs, R. A., & Cox, J. R. (1982). The elusive thematic-materials effect in Wason's 
selection task. British Journal of Psychology, 16,94-143. 

Holding, D. H. (1986). The Psychology of Chess Skill. Hillsdale, NJ: Lawrence 
Erlbaum Associates. 

Holland, J. H., Holyoak, K J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: 
Processes of Inference, Learning, and Discovery. Cambridge, MA: The MIT Press. 

Jeffries, R., Turner, A. A., Polson, P. G., & Atwood M. E. (1981). The processes 
involved in designing software. In J. R. Anderson (Ed.), Cognitive Skills and their 
Acquisition. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Johnson-Laird, P. N. (1983). Mental Models. Cambridge, MA: Harvard University 
Press. 

Koedinger, KR., & Anderson, J.R. (1989). Perceptual chunks in geometry problem 
solving: A challenge to theories of skill acquisition. In Proceedings of the Eleventh 
Annual Conference of the Cognitive Science Society. Hillsdale, New Jersey: 
Lawrence Erlbaum Associates. 

Koedinger, K. R., & Anderson, J. R. (1990a). Abstract planning and perceptual chunks: 
Elements of expertise in geometry. Cognitive Science, 14, 511-550. 

Koedinger, K R., & Anderson, J. R. (1990b). Theoretical and empirical motivations for 
the design of ANGLE: A New Geometry Learning Environment. Presented at the 

. AAAI Spring Symposium on Knowledge-Based Environments for Learning and 
Teaching, Stanford University, Palo Alto, CA. 

Korf, R. E. (1987). Macro-operators: A weak method for learning. Artiflciallntelligence, 
27,35-77. 

Larkin, J. (1988). Display-based problem solving. To appear in D. Klahr & K. Kotovsky 
(Eds.) Complex Information Processing: The Impact of Herbert A. Simon. Hillsdale, 
NJ: Erlbaum. 

Larkin, J., McDermott, J., Simon, D., & Simon, H. A. (1980a). Expert and novice 
performance in solving physics problems. Science, 208, 1335-1342. 

Larkin, J., McDermott, J., Simon, D., & Simon, H. A. (1980b) .. Models of competence in 
solving physics problems. Cognitive Science, 4, 317-348. 

Ll:lfKIn. J., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand 
words. Cognitive Science, 11, 65-99. 

,Leolgold, A. M., Lajoie, S., Bunzo, M., & Eggan. G. (1988). Sherlock: A coached 
practice environment for an electronics trouble shooting job. LRDC Report. 
Pittsburgh, PA: University of Pittsburgh. 



Neves. D. M. (1978). A computer program that learns algebraic procedures. 
Proceedings of the 2nd Conference on Computational Studies of Intelligence. 
Toronto. 

Nevins. A. J. (1975). Plane geometry theorem proving using forward chaining. 
Artificial Intelligence. 6. 1-23. 

Newell. A. (1973). You can't play 20 questions with nature and win: Projective 
comments on the papers of this symposium. In Chase. W. G. (Ed.). Visual 
Information Processing. New York: Academic Press. 

Newell. A. (1990). UnififJ(i Theories of Cognition. Harvard University Press. 
Cambridge. MA. 

Newell, A., & Simon. H. A. (1972). Human problem solving. Englewood Cliffs, NJ: 
Prentice-Hall. 

Nilsson, N. J. (1980). Principles of Artmclallntelligence. Palo Alto, CA: Tioga 
Publishing Co. 

Patel, V. L., & Groen, G. J. (1986). Knowledge based solution strategies in medical 
reasoning. Cognitive Science. 10,91-116. 

91 

Polk, T. A., & Newell, A. (1988). Modeling human syllogistic reasoning in Soar. 
Program of the Tenth Annual Conference of the Cognitive Science SOCiety. 
Hillsdale, NJ: Lawrence Ertbaum Associates. 

Reiser, B. J., Friedmann, P., Gevins, J., Kimberg, D. Y., Ranney, M., & Romero, A. 
(1988). A graphical programming language interface for an intelligent LISP tutor. 
Proceedings CH1'88. 

Rips, L.J., (1983). Cognitive processes in propositional reasoning. Psychological 
Review, 90, 38-71. 

Romberg, T.A. & NCTM Commission on Standards for School Mathematics (1987). 
Curriculum and evaluation standards for school mathematics. Working draft of the 
commission on standards for school mathematics of the National Council of 
Teachers of Mathematics. Reston, VA: NCTM. 

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1987). Knowledge level learning in 
Soar. In Proceedings of the Sixth National Conference on Artificial Intelligence, 
499·504. 

Sacerdoti, E. D. (1974). Planning in a hierarchy of abstraction spaces. Artlflcial 
Intelligence, 5, 115-136. 

Simon, H. A., & Gilmartin, K. J. (1973). A Simulation of memory for chess positions. 
Cognitive Psychology, 5, 29-46. 

Smith. M., & Good, R. (1984). Problem solving and classical genetics: successful vs. 
unsuccessful performance. Journal of Research in Science Teaching, 21, 895-
912. 

8wE~lIer, J., Mawer, R. F., & Ward, R. W. (1983). Development of expertise in 
mathematical problem solving. Journal of Experimental Psychology: General, 112, 
639-661. 



Sweller, J. (1988). Cognitive load during problem solving: effects on leaming. 
Cognitive Science, 12, 257-285. 

Sweller, J., & Cooper, G. (1985). The use of worked examples as a SUbstitute for 
problem solving in learning algebra. Cognition and Instruction, 2, 59-89. 

92 

Unruh, A., Rosenbloom, P. S., & Laird, J. E. (1987). Dynamic abstraction problem 
solving in Soar. In Proceedings of the AOGlAMIC Joint Conference, Dayton, OH. 

Voss, J., Vesonder, G., & Spilich, G. (1980). Text generation and recall by high­
knowledge and low-knowledge individuals. Journal of Verbal Learning and Verbal 
Behavior, 19, 651-667. 

Wason, P. C. (1966). Reasoning. In B. M. Foss (Ed.) New Horizons in Psychology. 
Harmondsworth: Penguin. 

Witkin. H. A .• Oltman, P. K., Raskin, E., & Karp, S. A. (1971). A Manual for the 
Embedded Figures Tests. Palo Alto, CA: Consulting Psychologists Press. 

-



APPENDIX A 

This appendix includes the materials used in this study: 

Handouts: Rule $ummary Sheet, Tracking Sheet, Concept Summary Sheet 
(ANGLE group only), ANGLE Text (ANGLE group only), GPT Text 
(GPT group only). 

Tests: Proof Construction A&B, Hidden Figures A&B, Truth Judgment 
A&B, and Proof Checking A&B. 

92 



DEF-PERP: 

CONG-ADJ­
ANGS: 

OORRES­
PARTS: 

SSS: 

SAS: 

RULE SUMMARY SHEET 

rtLABC 

LABC::LABD 
¢=> 

AB .LCD 

AABC::AXYZ 

AB :: XY, BC :: Yz, CA :: ZX, 

LABC :: LXYZ, LBCA:: LYZX, 
LCAB ::LZXY 

AB I XV, Be:: YZ, and AC :: XZ 

= 
AABCIAXYZ 

Aii I XY, Be :: YZ, LABC :: LXYZ 

= 
AABC I AXYZ 

LBAC :: LYXZ, AC .. Xl, LACB I LXZY 

= 
AABC:AXYZ 

LBAC: LYXZ, LACB :: LXZY, Be I Yz 

= AABCIAXYZ 

Segment AS is in the diagram 

= 
ABI Aii 



More Detailed Rule Review: 

DEF-PERP: 
Two lines are perpendicular, jQj J. CD, 

iff! they form ri~ht angles, .-tLABC and rtLABD. 

CONG-AOJ-ANGS: 
Angles formed by connecting lines are 
congruent, LABC = LABD, 

iff the lines are perpendicular, AB J. CD. 

CORRES-PARTS 
If two triangles are congruent, AABC = AXYZ, 
the 11 all the cOrresponding sides are congruent: 

SSS: 
If 

jQj = XV, BE:: YZ, and Ui :: ZX, and all the 
corresponding angles are congruent: LABC :: 
LXYZ, LBCA:; LYZX, and LCAB:; LZXY. 

three sides of one triangle, Ai, ic, and AI:, 
are congruent to the corresponding sides of 
another triangle, xV, VZ, and XZ, that is, jQj :: 

xv, BC 5 YZ, and AC = XZ, 
the triangles are congruent: AABC = AXYZ. 

two sides and the included angle of one 
triangle, Ai, ie, and LABC, are congruent to 
the corresponding parts, xV, fl, and LxYZ, of 
another triangle, that is, AB = XV, BC 5 YZ, and 
LABC 5 LXYZ, 
the triangles are congruent: AIIBC 5 AXYZ. 

C~D 
B 

CLD 
B 

means il and only il and indicates the rule can be applied in both directions. For 
'«"'ViC, the DllF-PllRP rule is really two rules: 1) II two lines are perpendicular then 

right angles and 2) II two lines form right angles then they are 
ndicular. 



ASA: 
If 

then 

AAS: 
If 

then 

two angles and the included side of one 
triangle, LABC, LBCA, and Be. are congruent 
to the corresponding parts, LXYZ, LYZX, and 
YZ, of another triangle, that is, LABC :: LXYZ, 

LBCA = LYZX, and BE:: YZ, 
the triangles are congruent: AABe .. AXYZ. 

two angles and a non-included side of one 
triangle, LABC, L'BCA, and AB, are congruent 
to the corresponding sides of another 
triangle, Lxyz, Lux, and xy. that is, LABC = 
LXYZ, LBCA .. LYZX, and AS .. MY, 

the triangles are congruent: AABC .. AMYZ. 

REFLEXIVE: 
If segment AS appears in the diagram, 
thell AB 5 AB. Ltc 

B 



Tracking Sheet 

Name: _____ _ Date started : ____ _ 
Id#: __ 

Here are the things you'll be doing as you work through the tutor. 
Please use this sheet to keep track of what you've done, so that 
when you come in on the next day you'll know where you left off. On 
the following page,' please record the time spend with the tutor on 
each day and which problems you did on that day. 

Please check off each problem as you do it. 

1. Review DEF-PERP. 
2. Do problems: 

[] PROB150 
[1 PROB152 

3. Review CONG-ADJ-ANGS. 
4. Do problems: 

[ 1 N1 
[1 PROB151 
[ 1 P1 
[1 N2 

5. Review CORRES-PARTS. 
6. Do problem: 

[ 1 N3 
7. Review SSS, SAS, ASA, and AAS. 
S. Do problems: 

[1 PROB310 
[1 N4 
[ 1 N5 
[ 1 P5 

9. Review REFLEXIVE. 
10. Do problems: 

[ 1 PROB311 
[1 PROB352 
[1 PROB353 
[1 N7 
[ 1 P2 
[ 1 P3 
[ 1 N16 
[ 1 N17 

I: 1 P6 
[ 1 P7 
[ 1 PS 

[ 1 N15 
[1 N9 
I: 1 NS 
[ 1 N10 
[ 1 N11 
I: 1 N12 
[ 1 N13 
[ 1 N14 



I DAY START FINISH TIME PROBLEMS COMPLETED 
TIME TIME SPENT 

1 

2 

3 

4 

5 

6 



PROB150 

A 
GIVENS: CA J. DE 

-I-;;;.B_ E GOAL: rtLABE 

PROB152 

Pl 

GIVENS: rtLCDA 

GOAL; DC J. EX 

GIVENS; LJKM:: LLKM 

GOAL: rtLLKM 

"'- GIVENS: "ABC:: .. HO 

~ GOAL: AB:: IT 
E G 

GIVENS: LFOH:: LKLM 
OF :: LM 
OH::LK 

GOAL: LOFH:: LLMK 

PROB151 

A----lB 

JHP 

K Q 

L R 

GIVENS: AB J. ED 

GOAL; LABD:: LEBA 

GIVENS: LRPQ:: LSPQ 

GOAL: RS::QN 

GIVENS: KQ J. PR 
rtLJKQ 

GOAL: LJKQ:: LLKQ 

PRQB31Q 

~ '" GIVENS: ~~ i ~~ 
~~ CA::FE 

FEe A GOAL: .. OFE :: .. DCA 

x 
f::.l.§. 

GIVENS: LAXB:: LCXD 
BX::CX 
LABX::LDCX 

GOAL: irA:: Xii 



Eli 
GIVENS: AJKH = AJPH 

LKlH= LlOP 
LlHKSLPHO 

AlKHSAOPH 

GIVENS: LlGH:: LSHP 
GJ S HQ 
AKH"EARPQ 

GOAL: LJLG :: LQSH 

GIVENS: ';IY 55 YZ 
WlC::Xl 

GOAL: AWXY:: AZXY 

P80B35$ 

GIVENS: LCED :: LACE 
LAECS LDCE 

GOAL: DC SEA 

GIVENS: APSR S APQR 

GOAL: AWSR 5 AWQR 

B E!&. 
GIVENS: AABD 5 AEFH 

ABCD::AFGH 

GOAL: AABC 55 AEFG AL.--J ____ .:lIo. 

C 

E L--_I.!..!-___ .;::".G 

GIVENS: ABCD:: A YZW 
AC55Xl 
LDBA:: LWYX 

GOAL: LADB :: LXWY 
Al-------;1! ~--....3W 

P80B352 

W~Zy 

J~-----!K 

c 

GIVENS: XW:: 'lY 
iU::XY 

GOAL: LXYZ:: LZWX 

GIVENS: Jl:: JK 
LlJK :: LM"K 

GOAL: lM 1 "K 

GIVENS: ADAC:: ABCA 
LAKD::LBKC 

GOAL: AAKD E ACKB 



GIVENS: LAEB : LCED 
A LABC:LDCB 

BA :CD 

GOAL: AABC: ADCE 

~ 
G GIVENS: AC l'BD 

AD:DC 
LFAB :LGCB 
AF :CG 

GOAL: LAFB : LCGB 

GIVENS: rtLLQR 
LPNR : LPRN 

GOAL: LNLP: LRLP 

GIVENS: AC: BC 
AK:BK 

GOAL: rtLADC 

GIVENS: JQ : KQ 
JF :KG 
LJFG: LKGF 

GOAL: FQ: GQ 

ML..--~ 

K 

GIVENS: JH: HL 
HH : Hi( 
LJHK :LHHL 

GOAL: AJKL: ALHJ 

GIVENS: KG : KH 
FH: GJ 
LKGJ: LKHF 
LFGK: LJHK 

F G H J GOAL: LFKG : LHKJ 

N 
A 0 

N14 

GIVENS: DE: EB 
LAED: LBEC 
LADB: LCBD 

GOAL: AB: CD 

GIVENS: LCAD: LBDA 
LBAD: LCDA 

GOAL: Ail: CD 

~
c GIVENS: AC: AD 

CK:DK 

A K B 
GOAL: LBCK : LBDK 



CONCEPTS~YSHEET 

PERPENDICULAR-ADJACENT-ANGLES 

Configuration: 

Whole-statement: 

Part-statements: 

Ways-to-prove: 

PERPENDICULAR-CROSS 

Configuration: 

Whole-statement: 

Part-statements: 

Ways-to-prove: 

1. rt ":::ABD 
2. rt ":::CBD 
is. ":::ABD:: ":::CBD 

DEF-PERP: {O {2} 
CON6-ADJ-AN6S: {is} 

AC'iBO 

1. rt ":::AXB 
2. rt ":::BXC 
3. rt ..:::CXO 
... rt ":::AXD 
5. ":::AXB:: ":::BXC 
6.":::BXC:: ":::CXD 
7.":::CXO::":::MtD 
8. ":::AXD:5 ":::AXB 

DEF-PERP: {1} {2} {3} { .. } 
CON6-ADJ-AN6S: {5} {6} (7) 
{B} 



CONGRUENT-TRiANGLES 

Configuration: 

Whole-statement: 

Part-statements: 

Ways-to-prove: 

Other related rules: 

AABC:AXVZ 

1. Ail:: xv 
2.BC= VZ 
3. CA:: ZX 
".""B :: ""V 
5.""C = ""Z 
6. ""A = ""X 

SSS: {1 23} 
SAS: {1 .. 2}{2 5 3}{3 6 1} 
ASA: {1 + 6} {2 .. 5}{3 5 6} 
AAS: {1 + 5}{1 56} {2 + 6} 

{25 6} {3 + 5} {3 + 6} 

CORRES-PARTS 

CONGRUENT-TRIANGLES-SHARED-SIDE 

Configuration: 

I 

Whole-statement: 

Part-statements: 

Ways-to-prove: 

Other related rules: 

w 

AXVW::AXZW 

I.XY::XZ 
2. VW = ZW 
3. ""V = ""Z 
+. ""VXW = ""ZXW 
5. ""XWV :: ""XWZ 

SSS: {1 2} 
SAS: {I +} {25} 
ASA: {+ 5} 
AAS: {3 +) {3 5} 

CORRES-PARTS 
REFLEXIVE 



ANGLE TUTOR TEXT 

You'll be working with a computerized tutoring system called ANGLE for A New 
Geometry Learning Environment. This text describes how to use ANGLE to solve 
geometry proof problems. In ANGLE, you construct proofs in two phases. First you 
work out a conceptual plan for the . proof leaving out the picky details. And then in the 
second phase you fill in the details to make your proof complete and rigorous. 

Using ANGLE to Solve a Proof Problem 
This section will take you step-by-step through the solution of a problem. We'll be 
doing the first problem on your Tracking Sheet, PROB150. 

Constructing a Conceptual Plan 
You build a conceptual plan using concepts like the ones shown on the Concept 
Summary Sheet you should have received. Look on the left of the ANGLE screen and 
notice the list or menu of pictures. Four of these pictures are the same as the pictures 
(configurations) on the Concept Summary Sheet. Below we'll say more about 
concepts, but for now we'll get you started on PROB150. 

Here's what PROB150 looks like in the usual notation: 

PROB150: A 

Given: EA.LDf 
0 B E 

Goal: rtLABE 

C 

When the problem appears on the screen, you'll notice it looks somewhat different. 
The problem givens are on the bottom of the screen and the goal is on the top. To 
construct a proof plan, you need to find one or more concepts that link the givens to the 
goal. The first few problems you'll do are relatively easy - involving only one concept. 
The concept you need for PROB150 is the PERPENDICULAR-CROSS concept (the second 
one on the Concept Summary Sheet). Notice how the configuration of the 
PERPENDICULAR-CROSS concept and the diagram for PROB150 look very much the 
same. This is your clue that this concept may be useful for solving the problem. 

Whenever you are given a whole-statement of a concept. you can prove any of the 
palt-s/'atementsof it. Look at the PERPENDICULAR-CROSS concept on your Concept 
Snmm,,,,, Sheet and compare it to PROB150. Notice that the given CA.L DE 

.col'res,poI1ds with the whole-statement of the PERPENDICULAR-CROSS concept and 
... ..oI~f\~~E is a part-statement. Thus, you can prove rtLABE directly from the given. In 

words, the plan for PROS 150 is short, you simply want to prove rtLABE using CA 
DE. Here's how the plan will look when you are done: 

1 



rtLABE 

CA!DE 

To prove a statement in ANGLE requires two easy steps. First, you indicate that 
rtLABE is the statement you want to prove. Next, you indicate CA ! DE as the reason. 
Here's how: 

Justifying: 
• Move the mouse pointer to "Justify" in the bottom menu on the left. 

(This is the action menu.) Click the button and "Justify" should 
highlight - if it doesn't, try again. 

• Now, indicate you want to prove rtLABE by moving the mouse to 
rtLABE and clicking the button. The statement should highlight. If it 
didn't, try it again, but make sure the tip of mouse pointer is on 
rtLABE. 

• Notice that the action menu has changed: "Select Reasons" is now 
highlighted instead of "Justify". 

Selecting Reasons: 
• Mouse-click on CA ! DE. A line will be drawn from EA ! DE to rtLABE. 
• If you click on CA ! DE a second time, the line will disappear. Try it. 

This is what you do if you make a mistake. Now, click on it once more 
to get the line back. 

• When you have the line connected, mouse-click on "DONE" in the 
menu underneath the diagram. 

• (The "ABORT" option can be used if you decide you want to quit a 
step you are working on.) 

ANGLE should now teli you that you have "a complete proof plan" and that you should 
"fill in the details". To get rid of the message window that appears, mouse-click on the 
OK button. 

ing in the Details 
Rule Summary Sheet provides information you'll need in filling in the details. 

need the rule DEF-PERP to finish up PROB150. Here is a statement of the rule: 

2 



c~o 
B 

DEF-PERP: 

Two lines are perpendicular, AB lCD, 
if and only if they form a right-angle rt"::::ABD. 

This rule can be used to make a detailed or "rigorous" connection between a 
perpendicular line statement, like CA l DE, and a right angle statement, like rt"::::ABE. 
The phrase if and only if in the rule indicates that it can be used in either direction: left­
to-right to go from perpendicular lines to a right angle or right-to-Ieft to go from a right 
angle to perpendicular lines. This is symbolized by the double arrows "<==>" on the 
Rule Summary Sheet. 

In PROB150, you'll use DEf-PERP in the left-to-right direction to go from the given 
perpendicular lines statement to the right angle statement in the goal. You want to 
insert the rule between these two statements so that your final proof will look like this: 

rt"::::ABE 

DEf-PERP 

CA l DE 

Here's how you add this rule to your proof: 

Entering a Rule: 
• Mouse-click on "Rule" in the menu to the left_ 
• A rule menu will appear. Mouse-click on DEf-PERP in the menu and a 

rule will be created to the right. 
• Mouse-click on "Exit" at the top of the rule menu. 

Moving: 
• Mouse-click on DEf-PERP and keep the mouse button down. 
• With the mouse button down "drag" DEf-PERP to the place where you 

want it by moving the mouse. Place it on top of the line between CA l 
DE and rt"::::ABE and then let go of the mouse button. 

"'"''-''' Text 3 



Inserting: 
• Make sure DEF-PERP is on top of the line between CA .L DE and 

rt..!ABE. 
• Mouse-click on "Insert" in the action menu. 
• Mouse-cli,ck on DEF-PERP. It should highlight. 
• Mouse-click on "DONE". 

If your proof is correct and fully detailed, ANGLE will tell you that your proof is 
"complete and rigorous". Notice that the lines have thickened. The thinner lines 
indicate planning steps, that is, steps with details left out. The thicker lines indicate 
detailed steps which are finished. 

Get rid of the "goad job" message by mouse-clicking on the "OK" button. 

Now you should start problem PROB 151. Here's how you start a new problem: 

Selecting a Problem: 
• Move the mouse to the top left corner of the screen to where you see 

the word "Problem". Put the mouse arrow on Problem and hold down 
the mouse button. The words "Load problem" should appear just 
below Problem. 

• Keep the mouse button down and move to Load Problem. It should 
highlight. When it does let go of the mouse button. 

• A list of problems will appear, including N1, Nl0, Nl1, .... If you don't 
see this problem list at this time, try the first two steps again. 
PROB151 does not appear on the screen, because it's down a little 
lower on the list. To move it into view, click the mouse button on top of 
the downward pointing arrow. If you went too far, click on the upward 
pointing arrow. 

• Once you see PROB151 move the mouse to it and click the button 
twice in a row fast. This is called double-clicking. 

It will take a little while for the problem to come up. Read on while you wait. 

Concept PartMstatements, 
The Properties of Perpendicular lines 
If someone asks you to draw two lines, you can draw them in just about any way you 
please. However, if someone asks to draw two perpendicular lines, you must draw 
them in certain way, that is, so that they form a right angle. When we say that two lines 
are perpendicular, we are indicating a particular arrangement or configuration of lines 
not just any arrangement. Basically, perpendicular lines come in three possible 
configurations depending on how the two lines meet. 

4 



RIGHT· ANGLE PERPENDICULAR· 
ADJACENT·ANGLES 

PERPENDICULAR· 
CROSS 

As you are introduced new concepts in this text, you'll be asked to consider the 
following question: What does the concept tell us about the angles and segments that 
are a part of the configuration? 

For the concept of perpendicularity we ask: What does the fact that two lines are 
perpendicular tell us about the angles and segments that are formed by the two lines? 
Let's look at the PERPENDICULAR-ADJACENT-ANGLES configuration first. Say we know 
that in the following picture AB is perpendicular to CD, in other words, AB! ED. 

C 

A ---'--------B o 

What does it tell us, if anything, about angles kADC and kBDC and about segments 
AB, Ali, DB, and CD? We already know that perpendicular lines form right angles. So, 
we know these two facts about the configuration: 1) rtkADC and 2) rt~BDC. Since 
both angles equal 90·, it is clear they are equal to each other. Thus, we can add one 
more fact to our list: 3) kADC :: kBDC. 

What can we say about the segments in the diagram above, given that we know AB ! 
CD? Basically, nothing. Knowing that the lines are perpendicular tells us nothing 
about the sizes of the segments, nor whether the sizes are related. For example, just 
because AB ! CD we don't know, for example, that Ali" DB. After all the diagram could 
look like this 

c 

A--------'-----B 
o 

5 



~--~~-------------------------

and it would still be true that All .L CD, however, clearly its not true that AD = DB. 

In summary, PERPENDICULAR-ADJACENT-ANGLES have 3 properties or part-statements 
as is shown below and on your Concept Summary Sheet. 

PERPENDICULAR-ADJACENT-ANGLES 

Configuration: 

Whole-statement: 

Part-statements: I. rt "ABD 
2. rt "CBD 
3. "ABO == "CBD 

Ways-to-prove: {I} (2) (3) 

Now let's do PROB151. This problem is very much like PROB150, but this time the 
PERPENDICULAR-ADJACENT-ANGLES concept is involved and you'll be proving a different 
part-statement. Since the goal "ABD :: "EBA is a part-statement of Mi .L ED, you can 
prove it directly as in PROB150. If you don't remember how to do this, refer back to the 
descriptions of Justifying and Selecting Reasons above. 

After you have a plan, you need to.fill in the details. A different rule is involved this 
time. It's called Congruent Adjacent Angles, which we abbreviate COHG-ADJ-AHGS. 

CONG-AOJ-ANGS: 

Angles formed by connecting lines are congruent, "ABC:: "ABD, 
if and only if the lines are perpendicular, AS.L CD. 

This rule can be used to make a detailed or "rigorous" connection between a 
.pelrpendi1cul:ar line statement, like AS.L ED, and an angle congruence statement, like 

.. " ...... Notice that this rule is also an "if and only if" rule. You can use it in the 
letl'-to··ria.htdirection to get from congruent adjacent angles to perpendicular lines or 

can use it in the right-to-Ieft direction to get from perpendicular lines to prove the 
ldja(:ent angles are congruent. In PROB151. you are using it in the right-Io-Ieft 

6 



You should now insert COHG-ADJ-AHGS into your proof. If you don't remember how, 
refer to the Entering a Rule, Moving, and Inserting directions above. 

[]If you haven't already, finish problem PROB151. 
When you are done, choose problem PROB152 and read on before dOing it. If you 
don't remember how to choose a problem, reread the directions for Selecting a 
Problem. . 

Concept Ways-to-Prove 
The previous section discussed the three properties or part-statements of the 
PERPENDICULAR-ADJACENT-ANGlES concept. In this section, we address the question: 
How many of these part-statements or properties do you need to know to prove two 
lines are perpendicular? 

Look at the following diagram. 

D 

A--,,--I-c 
B 

. Right now ",CBD is smaller than ",ABO. But consider what happens if line BD is moved: 

D 

A--L--I_~c 
B 

Try to answer these questions before going on: 
1. What happens to the sizes of the two angles? 

2. If line BD is moved so that ",ABO and ",CBD are the same size, what will 
line BD look like? Will it be tilted to the right, tilted to the left, or straight up 
and down (vertical)? Will it be perpendicular to AC? 

? I ? 
" . I 
\ I I 
\ I I 

A ~ C 
B 

7 



3. If line BD is moved so that LCBD becomes a right angle (= 90°), what will 
line BD look like? Wi II it be tilted to the right, tilted to the left, or straight up 
and down (vertical)? Will it be perpendicular to AC? 

4. What properties of the diagram above do you need to be told in order to 
know that AC 1 BD? Do you need to be told all three properties: rtLCBD, 
rtLABD, and LCBD:: LABD? Or is it enough to be told just two of these? 
Or is it enough to be told only one? 

To answer question 1 , you should notice that as BD moves, LCBD gets larger and 
LABD gets smaller. At some point LCBD, which started out smaller, will become equal 
to LABD, which started out larger. At the point where they become equal, BD will be 
vertical - if BD were tilted to the right LCBD would be smaller than LABD, if BD were 
tilted to the left LCBD would be larger than LABD. In other words, as a result of making 
LCBD :: LABD, lines BD and AC become perpendicular. This is the answer to question 
2 and a clue for question 4. 

Question 3 should be easy. If we make LCBD a right angle, BD will be vertical and so, 
we'll know that AC 1 BD. This answer should also help you with question 4. If you are 
given all three properties rtLCBD, rtLABD, and LCBD:: LABD, clearly you could prove 
Ai: 1 BD. But, simply being told one of these is enough to prove that AC 1 BD. In 
question 3, we saw that being told rtLCBD is also enough. For the same reason, 
being told rtLABD is enough too. Lastly, from question 2, we know that LCBD:: LABD 
is also enough. 

Summary 
To summarize, you can use anyone of the three part-statements of PERPENDICULAR­
ADJACENT-ANGLES in order to prove the whole-statement. This fact is indicated in the 
ways-to-prove of the concept (see your Concept Summary Sheet). The (1) in the 
ways-to-prove of PERPENDICULAR-ADJACENT-ANGLES indicates that you can prove AE 1 
BD if you know rt LABD. A (1 2) in the ways-to-prove of PERPENDICULAR-ADJACENT­
ANGLES would indicate that you need both right angles, rtLABD and rt LCBD, to prove 
;;C 1 BD. But, as we saw above, you just need to know one of them. 

Back to Doing Problems 
""" Look at the goal of PROB152, DC 1 EA, and notice that it is a whole-statement of 

PERPENDICULAR-ADJACENT-ANGLES. Whenever you want to prove the whole-statement 
of a concept, you should look at the concepts ways-to-prove. Since the given 

."" nt rtLCBD is way-to-prove of DC 1 EA, you can justify it directly from this given. 
; 00 this as described above in Justifying and Selecting Reasons. 

fill in the details, you need to find a rule which gets you from a right angle to 
.pel'pendicular lines. Look on your Rule Summary Sheet. What rule will work? COHG­
AD.J-i!,HG;S doesn't work because it connects perpendicular lines and an angle 
oorlon":"",,,> statement, however, DEF-PERP does work. Recall that DEF-PERP can be 

in either direction: you can prove right angles from perpendicular lines or, as in 
problem, perpendicular lines from right angles. 

8 



Insert DEF-PERP into your proof. If you forgot how, see the sections above on Entering 
a Rule, Moving, and Inserting. 

[1 Finish PROB15~. 
Choose problem N1 and read on. 

Again, problem N1 has a short plan - you can get the goal directly from the given. 
This time the problem diagram contains a PERPENDICULAR-CROSS configuration and a 
different one of the ways-to-prove is involved. Notice that the part-statements and the 
ways-to-prove of the PERPENDICULAR-CROSS concept are essentially the same as the 
part-statements and ways-to-prove of the PERPENDICULAR-ADJACENT-ANGLES concept. 

[]DoN1now. 
Choose problem P1. 

This is your first two step problem. When the problem comes up, try proving the goal 
directly from the given. ANGLE will tell you that you can only prove rt~MKl with a 
concept (or the whole-statement of a concept). The given ~JKM 5 ~MKl is not a 
concept but a part-statement. However, both of these statements are part-statements 
of the PERPENDICULAR-ADJACENT-ANGLES concept lJ ~ Mie. So, the given can be used 
to prove [J ~ HiE and then, [J ~ MiE can be used to prove the goal. The final proof 
plan will look something like this: 

rt~MKl 

[J ~ MiE 

~JKM 5~MKl 

You need to learn how to make the concept [J ~ MiE. When the problem is ready, do 
the following. 

Making a Concept: 
• Mouse-click on the PERPENDICULAR-ADJACENT-ANGLES configuration 

In the menu on the left - it's the 5th item down from the top. 
• Now click on the segments in the diagram that make up this 

configuration. Click any.where near the middle of a segment to select. 
The segments will highlight as you pick them. 

9 



• Highlight all the segments that make up the PERPENDICULAR­
ADJACENT-ANGLES configuration, in this case every segment in the 
diagram but lM. 

• If you make a mistake, you can click on a segment a second time. 
This will erase the highlighting of that segment. 

• When you've highlighted only the segments, lK, KJ, and KM, click on 
"DONE" in the menu below the diagram. A concept will be created, 
complete with the whole-statement and a miniature configuration. If 
you get an errormessage, try again. 

To finish the proof plan, you need to move the concept into the middle of the screen. 
Moving works just like it does with rules - see the directions above for Moving if you 
need to. Next, JustifyLJ.L MK just like you did for the goal statement in the problems 
above. Similarly, you need to justify the goal rt"MKl and select lJ .L MK as the 
reason. 

To fill in the details, you need to add rules on both steps. In other words, you need a 
rule to go from "JKM ;: "MKl to LJ .L MK and a rule to go from lJ .L MK to rt~MKl. 

[] Finish Pl .. 
Choose problem N2. 

In the problems so far, there's only been one given statement and only one concept 
configuration in the diagram. In problem N2, there are two given statements and two 
examples of the PEAPENDICULAA-ADJACENT-ANGLES configuration in the diagram. You 
need to figure out which of these two is relevant to proving the problem goal. 

[] DoN2now. 
Choose problem N3. 

10 



Triangle Congruence 
The remaining concepts and rules you will learn with ANGLE are related to triangle 
congruence. Just as segments and angles can be congruent, so can triangles. 
Triangles are congruent if they have the same size and shape. The following two 
triangles are congruent: 

Q T 

Pl--..... R s,L-_..>. U 

If two triangles are congruent, it is possible to place one on top of the other so that the 
first exactly covers the second. For 6PQR to be congruent to 6STU, the following 
points need to be in correspondences: 

P-S 

We indicate this triangle congruence in geometry with the statement 6PQR = 6STU. 
Alternatively we can say 6QRP = 6 TUS or 6QPR :: 6 TSU or any of the other 6 
possibilities where the points that correspond are in the same position. Note that 
6PRQ = 6STU is not a correct way to specify the congruence between these triangles 
because this indicates that PH = sf" which is clearly not true (look at the diagram 
above). 

What Are the Properties of Congruent Triangles? 
What does the fact that two triangles are congruent tell you about the segments and 
angles formed by the triangles? Consider the triangles below: 

B y 

z 

What can you say about the segments, AB, BC, CA, XY, YZ, and ZX, in these triangles? 
Given that you are told 6ABC :: 6XYZ, can you tell whether any of these segments are 
equal to each other? Compare the size of AB with the size of each of the other five 
segments. You should notice that XV is the same size. Perhaps this is not a surprise 
to you, since if you slide 6XYZ on top of 6ADC, AB andxy fit exactly on top of each 
other. So do BC and YZ as well as CA and zx. In other words, the segments of 
CONGRUENT-TRIANGLES have these three properties or part-statements: 1) AD = XV, 2) 
BE: Vi, and 3) CA: ZX. 

ANGLE Text 11 



What about the angles? The three corresponding angles of each triangle are also the 
same size. Thus: 4) LB:: LY, 5) LC:: LZ, and 6) LA:: LX are also part-statements of 
the CONGRUENT-TRIANGLES concept. 

Here's the CONGRUENT-TRIANGLES concept showing the six part-statements. We'll 
discuss the ways-te-prove below. 

CONGRUENT-TRIANGLES 

Configuration: 

Whole-statement: 

Part-statements: 

Ways-Io-prove: 

Other related rules: 

6ABCS 6XYZ 

1. AB = XY 
2.BC::YZ 
3. CA:: ZX 
".LB 5LY 
5.Lc::Lz 
6.LA ::LX 

SSS: {1 23} 
SAS: {I .. 2} {2 5 3} {3 6 I} 
ASA: {I .. 6} {2 .. 5} {3 5 6} 
AAS: {I .. 5} {I :5 6} {2 .. 6} 

{25 6} {3 .. :5}{3 .. 6} 

CORRES-PARTS 

Look at problem N3. Since the goal AB :: EF is a part-statement of the given 6ABC :: 
"EFG, your plan simply involves proving the goal using the given. 

To fill in the details you'll need to use the Corresponding Parts rule, abbreviated as 
CORRES-PARTS. This rule is also called CPCTP for "Corresponding Parts of 
Congruent Triangles are Congruent". 

12 



CORRES·PARTS 

If two triangles are congruent, .AABC = .AXVZ, 
then all the corresponding sides are congruent: AB = XV, BE = n, 
and CA = ZX, and all the corresponding angles are congruent: LABC 
5 LXVZ, LBCA:: LVzx, and LeAB:: LZXV. 

This rule is not an if and only if rule - it can only be used in the left-to-right direction to 
prove segments or angles congruent from congruent triangles. Here's how your final 
proof for N3 should look: 

AB:EF 

1 
CORRES-PARTS 

1 
.AABC = .AEFG 

ADS Ef is proven from .AABC:: .AEfG using eORRES-PARTS as the rule. eORRES­
PA"RTS cannot be used in the right-to-Ieft direction to prove triangles congruent from 
congruent segments and angles. The rules below are for that purpose. 

[] Finish N3 by inserting the eORRES-PARTS rule. 
Choose problem PROB310 and read on. 

Ways to Prove Triangles Congruent 
Look on your Rule Summary Sheet and you'll notice that the next 4 rules can all be 
used to prove triangles congruent. These four rules indicate the different combinations 

CONGRUENT-TRIANGLES part-statements which are enough to prove the triangles 
congruent. Basically, you need to know at least three part-statements to prove 
.tn~mgllescongruent. But. not just any three will do. What three work? 

Combinations of that work: 
3 sides (SSS), 
2 sides and 1 angle if the angle is included (SAS), or 
1 side and 2 angles (AS A or AAS). 

13 



Combinations that don't work: 
<3 part-statements, 
2 sides and 1 angle that is not included, 
3 angles. 

The combinations that work are summarized in the ways-to-prove of the CONGRUENT­
TRIANGLES concept above and on your Concept Summary Sheet. Notice that there is 
only 1 combination of three sides, 3 combinations of two sides and an included angle, 
3 combinations of two angles and an Included side, and 6 combinations of two angles 
and a non-included side. 

You can do PROB310 with a one step plan since the givens are the 3 segment part· 
statements of the goal .6.GFE : .6.DCA. In other words, Justify the goal statement and 
select all three givens as reasons. Don't forget to click on "DONE". 

Filling in the Details of Triangle Congruence Plans 
There are four rules for proving triangles congruent. The first is the side-side-side 
postulate, which we will abbreviate sss: 

sss: 

Ifthree sides of one triangle, AB, BC, and AC, are congruent to the 
corresponding sides of another triangle, XV, Vl, and Xz, that is, AB : 
XY, Be: Ye., and AC: Xz, 
then the triangles are congruent: .6.ABC == .6.Xye.. 

Here is how ss!> is used as part of a proof: 

finish up PROB31 0, you need to Insert the sss rule Into your plan. Place sss on 
one of the three lines going up to .6.GFE: .6.DCA. REPEAT: You only need to put It 

.1''''''.1;;; Text 14 



on one of the three lines. Then choose Insert as usual and click on sss. Don't forget 
to click on DONE. 

[1 Finish PROB310 if you haven't .. 
Choose problem N4 and read on. 

As part of your solution plan for problem N4, you need to construct a TRIANGLE­
CONGRUENCE concept for the triangles that appear in the diagram. Mouse-click on the 
TRIANGLE-CONGRUENCE configuration in the menu of the left (the 9th item down from the 
top) and then, mouse-clipk on the segments in the diagram that make up these 
triangles. See the directions for Making a Concept above if you need help. 

When you're ready to fill in the details you'll need a new rule for proving triangle 
congruence. Instead of using just sides, this rule uses a combination of angles and 
sides: 

SAS: 

If two sides and the included angle of one triangle, AB, BC, and 
"ABC, are congruent to the corresponding parts, RV, VZ, and "XYZ, 
of another triangle, that is, AD ;: XY, BC :: vz, and "ABC:: "XYZ, 
then the triangles are congruent: AABC ;: AXYZ. 

Note that the side-angle-side postulate requires that the angles be contained between 
the two congruent segments. The figure below shows why this is critical. 

Q 
" , 

I T 

P '----Hc---"----"'R s~ U 

Even though there are two sets of corresponding sides, PQ :: ST and PR :: SU, and a set 
of corresponding angles. "PRQ::" SUT, clearly these triangles are not congruent. 
(Note: the dashed lines indicate how APRQ would look on top of ASUT.) In order for 

.SAS to apply, make sure the angle is at the point where the two congruent segments 
meet. If "RPQ :: " UST had been given in the picture above, then you could prove the 

;.tni:l.ngles congruent by SAS. 

Do problem N4. 
problem N5 and read on. 

Text 15 



Only under the circumstances indicated above is it possible to prove triangles 
congruent when you have two sides and an angle as congruent corresponding parts. 
However, no special circumstances are necessary when you have two angles and a 
side as congruent corresponding parts. The two rules ASA and AAS are used in these 
situations. 

ASA: 

Iftwo angles and the included side of one triangle, ..t::ABC, ..t::BCA, 
and BE, are congruent to the corresponding parts, ..t::XYZ, ..t::YZX, and 
Y'Z, of another triangle, that is, ..t::ABC : ..t::XYZ, ..t::BCA: ..t::YZX, and BC 
=YZ~ 
then the triangles are congruent: .6.ABC : .6.XYZ. 

AAS: 

If two angles and a non-included side of one triangle, ..t::ABC, ..t::BCA, 
and AB, are congruent to the corresponding sides of another 
triangle, ..t::XYZ, ..t::YZX, and XV, that is, ..t::ABC:: ..t::XYZ, ..t::BCA: ..t::YZX, 
and AD: XY, 
then the triangles are congruent: .6.ABC;: .6.XYZ. 

You now have four rules, sss, SAS, ASA, and AAS, that you can use to prove triangles 
congruent. 

. 11 Finish problem N5. 
Choose problem P5 and read on. 

Overlapping Concepts 
In the next few problems we'll be exploring cases where two concepts overlap. Look 
in the diagram for problem P5 below. 

16 



P5: J 

Given: oA.JKH;: oA.JPH 
LKLH;: LlOP 
LLMK = LPHO 

Goal: oALKH:: oAOPH 

L'-----~~------~O 
N 

Try to figure how concepts oA.JKH :: oA.JPM and oALKH :: oAOPH overlap. In other words, 
what part-statement of oA.JKM = oA.JPM is also a part-statement of oAlKH :: oAOPH. On 
the back of your Tracking Sheet, write down the 6 part-statements of oA.JKM ;: oA.JPH. 
After you've done that write down the 6 part-statements of oAlKH :: oAOPM. Circle the 
statement that appears in both lists. Ask Ken to check this when you're done. 

Finding such overlapping part-statements is usually a big clue to doing a proof. In P6, 
Kit:: !'iN provides you a way to get from oA.JKM :: oA.JPH to oALKH S oAOPH. You can 
prove KM ;: !'iN using oA.JKM :: oA.JPM and then, use KH S PH along with the other part­
statements you're given to prove oALKH;: oAOPH. 

In order to prove KM S !'iN, you'll first need to create this statement. Here's how. 

Making a Segment Congruence Statement: 
• Mouse-click on the item at the bottom of the menu on the left. just 

above the action menu. It contains three segments with one, two, and 
three markings on them. 

• Mouse-click on KH in the problem diagram. ''Kif s" should appear in 
the box below the diagram. Now, mouse-click on PM and KH S PH 
should now appear in the box. 

• Mouse-click on "DONE". 
• NOTE: If you want to create a segment that is made up of two smaller 

segments, click on one segment, keep the mouse down, and drag 
over the other segment. 

can move this statement into the proof and justify it just like a concept. In this 
• you want to JUstifyKH S!'iN and then pick oA.JKH = oA.JPH as the reason. 

Finish problem P5 . 
. Gh,oosie problem P6 and read on. 

"""'Ll:' Text 17 



P6: 

Given: 6JKN:: 6JPN 
"KLN :: "LOP 
"LNK:: "PHO 

Goal: 6ABC :: 6EFG 
AL---~D------~~C 

EL---~------~G 

The proof for problem P6 involves 3 overlapping CONGRUENT-TRIANGLES concepts. 
Write down the part-statements for each of the three triangle congruences. Figure out 
how the two given triangles overlap with the goal triangles. You should find 2 overlaps 
between 6ABD :: 6EFH and 6ABC :: 6EFG, and 2 overlaps between 6BCD :: 6FGH. 
and 6ABC :: 6EFG. Have Ken check these. 

In order to do problem P6, you'll need to create the angle congruence statements you 
find in the overlap between the triangles. Here's how. 

Making an Angle Congruence Statement: 
• In the menu on the left, mouse-click on the item just above the item for 

congruent segments. It contains three angles with one, two, and three 
markings on them. 

• To indicate an angle, you need to mouse-click near the vertex right 
about where you would draw a mark with a pencil to indicate angle 
congruence. When you've selected an angle, it should appear in the 
box below the diagram. 

• When you've selected two angles, mouse-click on "DONE". 
• NOTE: If you want to create an angle that is made up of two smaller 

angles, click on one angle, keep the mouse down, and drag over the 
other angle. 

Work on problem P6. Make the overlapping statements you found and prove them 
using the given triangles. Then, figure out how you can use these statements to prove 
the goal triangle. Warning: Remember there is no SSA rule - if you have two sides 

.. and an angle, the angle must be the included angle. 

Finish problem P6. 
; 1.;1'100'''' problem P7 and read on. 

~am~,tirrl"" you need to search for the key concept or concepts that are needed to 
form a proof plan. In problem P7, think about what triangles you could prove 
Co,nar'UAlnt in order to prove the goal "JLG :: "QSN. When you've found those 

18 



triangles, create the concept for them - use the menu on the left and mouse-click on 
the segments which make up the two triangles. 

Now, think about how the triangle-congruence you want to prove overlaps with the 
triangle-congruence you are given, ..a.KHJ = ..a.RPQ. 

If you're having trouble with figuring out how to do the proof, you can ask ANGLE for a 
hint: 

Requesting Hints from ANGLE: 
• Go up to the "Info" menu, mouse-click on "Info" and hold the mouse 

button down. Slide down to "Hint" and let go of the mouse button. 
• Read the message that should appear in the upper right corner of the 

screen. 
• If you want a stronger hint, try "Hint" again. You can keep getting 

more and more specific hints and if you are really stuck the tutor will 
eventually tell you what to do. 

[ J Finish problem P7. 
Choose problem PB and read on. 

On harder problems, like PB, it is often useful to try to prove triangles congruent even if 
you don't know how they will help you prove the goal. So, in this problem diagram, 
find any two triangles which look congruent and make the corresponding concept. Try 
to prove it. If you can't, try to prove some other triangles congruent. Then when you've 
done that, go back to the first triangles if you need to, and try to prove them congruent 
using what you've learned. 

Remember, it helps to figure out how the corresponding segments and angles of 
proven congruent triangles overlap with the corresponding parts of triangles you are 
trying to prove congruent. 

Ask for a hint, if you're having trouble. See "Requesting Hints from ANGLE" above. 

[I Finish problem PB. 
Choose problem PROB311 and read on. 

Congruent Triangles That Share a Side 
Planning with the CONGRUENT-TRJANGLES-SHARED-SIDE Concept 
In the following diagram it is given that AD = BC and AD = CD. 

"".on ... Text 19 



A c 

. Are the two triangles, AABD and ACBD, congruent? Even though you're only told two 
statements about them and usually you need at least three? Yes, the triangles are 
congruent - you could fold one exactly on top of the other. How is it that these 
triangles are definitely congruent even though you're only given two statements about 
them? The answer is that since Bfi is a side of both triangles, so the triangles actually 
have three corresponding sides which are congruent. 

In ANGLE there is a special concept for congruent triangles that share a side: 

CONGRUENT-TRIANGLES-SHARED-SIDE 
Configuration: 

Whole-statement: 

Part-statements: 

Ways-to-prove: 

Other related rules: 

x 

w 

AXYW:: AXZ~l 

I. XY 5 XZ 
2. YW:: nl 
3.-t,Y::-t,Z 
4. -t,YXW:: -t,ZXW 
5. -t,X~IY :: -t,XWZ 

SSS: {1 2} 
SAS: {1 4} {2 5} 
ASA: {4 5} 
AAS: {3 4} {3 5} 

CORRES-PARTS 
REFLEXIVE 

two triangles share a side, you only need two segment or angle congruence 
IltSl'Arr,,,nt .. to prove them congruent - as long as they are the right two. These are 
~ndil~atEld in the ways-to-prove of the CONGRUENT-TRIANGLES-SHARED-SIDE concept. 

that the first way-to-prove, {I 2}, corresponds with the situation above where the 

"''-=''1..1: Text 20 



two segment part-statements are used to prove the triangles congruent. This is also 
the situation in PROB311. 

Working out a plan for problem PROB311 is quite simple. You can prove the goal 
.o.WXy :: .o.ZXy directly from the givens because the goal is a CONGRUENT-TRIANGLES­
SHARED-SIDE concept and the givens correspond with the first of the ways-lo-prove of 
this concept. In other words, Justify .o.WXY ii .o.ZXY and pick WY:: YZ and wx ii Xl as 
reasons. 

Filling in the Details Using the REFLEXIVE Rule 
At the detail level, you need to prove these triangles congruent by sss. However, you 
only have two congruent side statements on the screen. You need to construct the 
reflexive statement XV;; XV and prove it by the REFLEXIVE rule. Here's the rule: 

REFLEXIVE: 
If segment AS appears in the diagram, 
then AB = AB. Lbo 

B 

Here's how you use it in problem PROB311. First you need to make the reflexive 
statement - this is just like "Making a Segment Congruence Statement" above: 

Making a Reflexive Statement: 
• Mouse-click on the segment congruence menu item (at the bottom on 

the left, just above the action menu). 
• Mouse-click on the segment in the diagram. "XY = " should appear in 

the box belOW the diagram. Mouse-click on the segment a second 
time. XY = XY should now appear in the box. 

• Mouse-click on "DONE" and then move the statement into the middle 
of the screen. 

Now you need to prove this statement. 

Proving a Reflexive Statement: 
• Select REFLEXIVE from the rule menu and move it so that it is below XV 

iiXV. 
• Now Justify XV :: XY by choosing Justify from the action menu and 

mouse-clicking on XV :: XV. 
• Pick the REFLEXIVE rule as the reason by mouse-clicking on il. 
• Mouse-click on "DONE" . 

.. You don't need any premises going into the REFLEXIVE rule as long as the segment 
a~lpe.ars in the diagram. Everything else in your proofs must be built up from the 

In other words, for your proof to be complete, everything but the givens and 
REFLEXIVE rule should have thick lines going into it. 

last thing you need to do to finish PROB311, is add the sss rule. 

21 



Adding a Rule to Prove a CONGRUENT-TRIANGLES-SHARED-SIDE 
concept: 
• Get sss from the rule menu and move it up top of one of the two lines 

going to AWXV:: AZXV. Make sure it is higher on the screen the 
reflexive statement xv :: xv. 

• Now, Insert the rule by choosing Insert and mouse-clicking on sss. 
But, before you choose "DONE" mouse-click on xv :: xv to add it as 
the third premise for sss. 

• Mouse-click on "DONE". 

[ 1 Finish problem PROB311. 
Choose problem PROB352 and read on. 

In this problem, you'll have to construct a CONGRUENT-TRIANGLES-SHAREO-SIDE concept. 
Pick the CONGRUENT-TRIANGLES-SHARE~-SIDE configuration in the menu on the left - it's 
the picture just below the CONGRUENT-TRIANGLES configuration. Now indicate the 
segments in the diagram that make up A\~XZ:: AVZX. 

Finish the proof plan by using this concept as the intermediate step between the 
givens and the goals. Then fill in the details. Remember to add the reflexive 
statement, justify it, and then select it as an extra premise when inserting the rule for 
A\~XZ .. A VZX. 

[ ) Finish problem P352. 
Choose problem PROB353 and read on. 

As shown below CONGRUENT-TRIANGLES-SHARED-SIDE configurations can come in 
many forms beside the one shown above. 

22 



CONGRUENT-TRIANGLES-SHARED-SIDE configurations: 
A 

1. 2. A 3. y 

x 
y 

B x 

5. 6. y 

8. A y 

X~ 
7. A~ 

X B 

B X 

9. ;1\ 
X illy 

B 

The triangles can be on opposite sides of the shared side as in configurations 1-4 and 
7-9 or on the same side of the shared side as in 5 and 6. The points on shared side 
can correspond with themselves as in configurations 1, 2, and 9 where .6XAB :; .6 VAB 
or can they can correspond with each other as in the other configurations where .6XBA 
:: .6VAB. The triangles involved may have acute angles only (1,3,5, and 7), an 
oblique angle (2, 4, 6, and 8), or a right angle (9). 

The diagram for PROB311 is like configuration 2, while the diagrams for PROB352 and 
PROB353 are like 7. The problems below will have other types of configurations. 
Watch out for configurations 5 and 6 which are particularly hard to see. 

[1 Finish problem P353. 
Choose problem N7 and read on. 

As we discussed above, a good strategy for doing difficult problems is looking for 
overlapping part-statements between triangle concepts you've proven and ones you 
want to prove. This is also true of other concepts. Overlaps can also occur between a 
CONGRUENT-TRIANGLE-SHARED-SIDE concept and one of the perpendicular concepts. 
This happens in problem N7 where the diagram looks like configuration 9 above. 
Figure out how the PERPENDICULAR-ADJACENT-ANGLES concept and the CONGRUENT­

.TRIANGLE-SHARED-SIDE concept overlap in this problem. What part-statement is a 
'!lIIOPEmV of both concepts? 

Finish problem N7. 

23 



Choose problem P2 and read on, 

For this problem, repeat the exercise of identifying the part-statements which appear 
both in the given triangle congruence statement and the goal triangle congruence 
statement Have Ken check what you come up with, You should find two statements 
that are part-statements of both triangle congruences, 

[1 Finish problem P2, 
Choose problem P3 and read on, 

Do overlap exercise, just as with P6 

[) Finish problem P3, 
Choose problem N16 and read on, 

One of the more difficult forms of the CONGRUENT-TRIANGLES-SHARED-SIDE configuration 
is the case where the two triangles are on the same side of the shared segment­
configurations 5 and 6 above, This is the case in problem N16, What is particularly 
hard about this configuration is seeing the corresponding angles, Write down the 
three corresponding angle statements for triangles AABC and ADCB in problem N16, 
Have Ken check these, 

[I Finish problem N16, 
Choose problem N17 and read on. 

Remember: 
1. Look in the diagram for triangles which look congruent - try to prove 

that they are, 
2, Identify overlaps between triangles you want to prove congruent and 

ones you've already proven, 

[1 Finish problem N17. 
Choose problem N15 and read on, 

. Review the PERPENDICULAR-ADJACENT-ANGLES concept. 

How many part-statements do you need to prove the CONGRUENT-TRIANGLES-SHARED­
SIDE concept? 

What triangles could you prove congruent in order to prove the goal ~BFA :; ~CGB of 
problem N15? 

[] Finish problem N15, 
Choose problem N9 and read on, 

triangles you need in this problem are a little difficult to see, Counting all the 
tnannl"., in the diagram may help you to notice some triangles that you didn't at first. If 

are having trouble, ask ANGLE for help. See "Requesting Hints from ANGLE" 

24 



[ J Finish problem N9. 
Choose problem N8 and read on. 

Remember: 
1. Look in the diagram for examples of perpendicularity or triangle 

congruence concepts. 
2 .. Identify overlaps between concepts you've proven and ones you want 

to prove. 

[ 1 Finish problem N8 and keep these things in mind as you do the remaining problems 
on your tracking sheet. If you finish all the problems, talk to Ken. 

25 



GEOMETRY PROOF TuroR TExT 

You'll be working with a computerized tutoring system called the 
Geometry Proof Tutor or GPT, for short. This text describes how to 
use GPT to solve geometry, proof problems. 

In the first problem, you'll be using the rule DEf-PERP. Here is a 
statement of the rule: 

DEF·PERP; 

Two lines are perpendicular, liB ~ CD, 
if and only if they form a right angle rt~ABD. 

This rule and the others you'll be using appear on the Rule Summary 
Sheet you should have been given. You can refer to this sheet when 
doing prOblems. Let's start our first problem on GPT. 

Using GPT to Solve a Proof Problem 
This section will take you step-by-step through the solution of a 
problem. We'll be doing the first problem on your Tracking Sheet, 
PROBI50. 

Selecting 8 Problem: 
• Look on the computer screen and you should see a 

problem menu, that is, a list of problems from which 
you can choose. Locate PROB 150 in the menu. 

• Move the mouse so that the arrow on the screen is 
pointing to PROBl,50 in the menu. 

• Hold down the the left mouse button and do not let go. 
PROBI50 should highlight in the diagram. 

• If PROBI50 is not highlighted, keep the left button 
down and move the mouse until it is. Then let go of 
the button to select PROB150. 

It will take a little while for the problem to come up. Read on, while 
you wait. Here's what PROBl50 looks like in the usual notation: 

OPT Text I 



PROB150: A 

Given: ell J. DE o _-I-;;;.B_ E 

Goal: rt"""BE 

c 

When GPT is ready you'll notice the problem appears on the 
computer screen in a different form. The givens are on the bottom 
and the goal is on the top Your job is to link the givens to the goal. 
using geometry rules and statements. When you are done. your 
proof will look something like this: 

DEF-PERP 

At the bottom of the screen you should notice the question "What 
statements are you working from?". The tutor wants to know what 
given or proven statements you are going to use as the premise for a 
geometry rule. 

Selecting Premises: 
• Move the mouse pointer to the given statement, ~ J. 

Ii!", and press and release the left button. A box should 
appear around the statement. If a box didn't appear, 
try it again, but hold the mouse button down a little 
longer this time. 

• Now. move the mouse up a little bit and press and 
hold down the right button. A menu should appear. 

GPT Text 2 



Slide the mouse up so that the "Done selecting" option 
is highlighted and then, let go of the button. 

You may have wait a second or two, but than the question: "What is 
the rule?" shopld appear at the bottom of the screen. The tutor 
wants you to type in the rule that follows from the premise(s) you've 
selected. 

Typing the Rule: 
• Use the keyboard to type in the rule, DEF-PERP. 
• When you are done typing, press the ENTER key. Its 

on the right side of the keyboard and has two arrows 
on it pointing down and to the left. The rule should 
appear on the screen with a line from the premise, I: iii 
.L DE, to it. 

Finally, GPT wants the conclusion that follows from applying the rule 
you typed to the premise you selected. The question "What is the 
conclusion?" should appear at the bottom of the screen. There are 
actually four possible conclusions of applying DEF-PERP to &iii .L DE : 
rt~ABD, rt~DBC, rt~CBE. and rt~EBA. But since rt~EBA is the goal, you 
should enter it. 

Entering the Conc:lusion: 
• Move the mouse up to the menu in the top-left comer 

of the screen and fmd the item for right angles: rt~. 
• Click the left button on top of rt~. You should see this 

symbol appear at the bottom of the screen. If you 
don't, try it again, but hold the mouse down a little 
longer this time. 

• Move to the problem diagram to indicate the points E. 
B, and A: 

• Click the left button on point E in the problem 
diagram. You should now see rt~E on the screen. 

• Left-click on point B in the diagram. 
• Left-click on point A. 

• You should see rt~EBA on the screen. If you make a 
mistake you can use the RUB OUT or CLEAR INPUT 
options at the bottom of the menu. Press the ENTER 
key when you are done. 

GPT Text 3 



After you press ENTER, GPT should respond by drawing a line from 
DEf-PERP to rt~E811 and then printing "SUCCESS" to indicate that you 
have completed the proof. 

Now you should load PROBI52 (if you forgot how, see the note above 
on Selecting a Problem). Since it takes a while for GPT to prepare 
a problem, you should rea4 on while you wait. 

While PROB 150 illustrated the use of the DEf-PERP rule in the left-to­
right direction, that is, from perpendiculars to a right angle, PROBl52 
illustrates the use DEf-PERP in the right-to-left direction, that is, from 
a right angle to perpendiculars. 

"If and Only Ir' Rules 
The phrase "if and only if' in the Definition of Perpendicular Lines 
indicates that this rule works in both directions. If you are given or 
have proven a perpendicular statement on the screen, then you can 
use DEf-PERP (in the left-to-right direction) to prove that anyone of 
the angles formed is a right angle. This is what you did in PROBI50. 

Going in the other direction, if you have a right angle statement on 
the screen, you can use DEf-PERP (in the right-to-left direction) to 
prove that the lines making up this angle are perpendicular. You will 
use DEF-PERP in this way in PROBI52. 

Look at DEF-PERP on your rule summary sheet. The double arrows 
"<=>" indicate that this rule works in both directions. This is not the 
case for all rules, for example, look at the rule CORRES-PIIRTS on the 
sheet. This rule can only be used in the left-to-right direction. This 
is indicated by a single headed arrow "=>". 

If forgot how to Select Premises, Type the Rule, or Enter the 
Conclusion, use the directions above. In doing this problem, you 
can use a short-cut for entering the conclusion. Whenever the 
conclusion is the problem goal, you can simply point to it and 
indicate "DONE SELECTING". 

Enter the Conclusion Short·Cut: 
• Make sure you've selected premises and typed a rule. 

If you've done so GPT should be asking you, ''What is 
the conclusion 1". 

• Left-click the mouse on the goal statement, IJl!" l EA. 

GPT Text 4 



• Hold done the right button, choose "DONE SELECTING", 
and then let go of the button. 

[J If you haven't already. do problem PROB152 now. 
When you are. done, chose the next problem, NI 

The next rule you'll use in problems is called Congruent Adjacent 
Angles, which we abbreviate COltO-ADJ-AltOS . 

CONG-ADJ-ANGS; .Lo 
B 

Angles formed by connecting lines are congruent. ~ABC e 
~ABD. 

if and only if the lines are perpendicular, ~ .1 flj. 

Notice that this rule is also an "if and only if' rule. You can use it in 
the left-to-right direction to get from congruent adjacent angles to 
perpendicular lines or you can use it in the rig ht-to-left direction to 
get from perpendicular lines to prove the adjacent angles are 
congruent. 

Use CONO-ADJ-AltGS in the left-to-right direction in problem Nl. 

[J Do NI now. 
Choose problem PROB151 next and read on. 

The picture below illustrates the use of CONG-ADJ-AltOS in the right­
to-left direction: 

GPT Text 5 



[] Do PROB151 now. 
Choose problem PI. 

This is your first two step problem. After selecting a premise and 
typing a rule, this time you won't be able to use the shon-cut for 
entering the conclusion, since the conclusion of the first step, [J J. FiK, 
is not the goal. You'll need to enter this statement as described 
above in Enter tbe Conclusion. 

[]DoPlnow. 
Choose problem N2. 

In the problems so far, there's only been one given statement and 
you always stan by selecting it. In the next problem, N2, there are 
two given statements and you need to figure out whether to select 
both or just one of them. (Hint: B.oth the rules you've learned so far 
can only have one premise.) 

[] Do Nl now. 
Choose problem N3. 

Triangle Congruence 
All the remaining rules you will learn with GPT are related to 
triangle congruence. Just as segments and angles can be congruent, 
so can triangles. Triangles are congruent if they have the same size 
and shape. The following two triangles are congruent: 

GPT Text 6 



a T 

/--.... u 

If tWQ triangles are congruent, it is possible to place one on top of the 
other so that the fll'St exactly covers the second. For ..... aR to be 
congruent to .. STU; the following points need to be in 
correspondences: 

We indicate this triangle congruence in geometry with the statement 
..... QR iii ... STU. Alternatively we can say .. aRP Ii! .. TUS or .. aPR !Ii ... TSU 

or any of the other 6 possibilities where the points that correspond 
are in the same position. Note that ... PRQ Ii ... STU is not a correct way 
to specify the congruence between these triangles because this 
indicates that PR iii Sf which is clearly not true (look at the diagram 
above). 

Proving Parts or Triangles Congruent 

By definition we know that if 2 figures are congruent their 
corresponding parts are congruent. Consider the two triangles below. 

If ""BC !Ii ... DEF then we can conclude any of the following: 

-,,,! ..a> 
-'B!! -'E 
-,c!! -'F 

To do so you need to use the Corresponding Parts rule, abbreviated 
as CORRES-P"RTS. This rule is also called CPCTP for "Corresponding 
Parts of Congruent Triangles are Congruent". 

OPT Text 7 



CORRE$~PART$ 

If two triangles are congruent, AASC I AXVl, 
then all the corresponding sides are congruent: AS I !lV,1i!" I 
n, and ~ I n, and all the corresponding angles are 
congruent: "::ABC I ..::xVl, "::BCA I "::VlX, and "::CAS I "::zxv. 

This rule is not an if and only if rule - it can only be used in the left­
to-right direction to prove segments or angles congruent from 
congruent triangles. Here's an example showing how "::BAC I "::EDF can 
be proven using COR RES-PARTS as the rule and AABC I ADEF as the 
premise: 

..::sAC Ii! "::EDF 

r 
cORRES-PARTS 

r 
AABC Ii! ADEF 

cORRES-PARTscannot be used in the right-to-Ieft direction to prove 
triangles congruent from congruent segments and angleB. The rules 
below are for that purpose. 

[ J Do problem N3. 
Choose problem PROB31O and read on. 

Proving Triangles Congruent 

Look on your rule summary sheet and you'll notice that the next 4 
rules can all be used to prove triangles congruent. The fisrt is the 
side-side-side postulate, which we will abbreviate s SS: 

OPT Text 8 



SSS: 

If three sides of one triangle, ;{ii, BC, and ;{c, are congruent 
to the corresponding sides of another triangle, lCV, VZ, and 
ft, that is, g I XV,IE I Vi, and ;{c IlCZ, 
then the triangles are congruent: AABC II AXYZ. 

Here is how sss is used as part of a proof: 

[] Do problem PROB31O. 
Choose problem N4 and read on. 

Another rule for determining triangle congruence uses a combination 
of angles and sides: 

SAS: 

If two sides and the included angle of one triangle, ;{I',lic, 
and ,""AB C, are congruent to the corresponding parts, R''r, fz, 
and ,""XYZ, of another triangle, that is, M e Xv, Be e n, and 
,""ABC I ,""xu, 
then the triangles are congruent: AABC Ii AXYZ. 

OPT Text 



Note that the side-angle-side postulate requires 
contained between the two congruent segments. 
shows why this is cridcal. 

., 
, 

that the angles be 
The figure below 

I T 

P '----Hr--'--".. •• ~ U 

Even though there are two sets of corresponding sides, f1f I! !iT and ,. Ii 
I! rI1, and a set of corresponding angles, ,",PRQ I! '"' aUT, clearly these 
triangles are not congruent. (Note: the dashed lines indicate how 
.. PRQ would look on top of .. auT.) In order for aAa to apply, make 
sure the angle is at the point where the two segments meet. If '"' R P Q 

I! '"' UST had been given in the picture above, then you could prove 
the triangle s congruent by a AS. 

[J Do problem N4. 
Choose problem N5 and read on. 

Only under the circumstances indicated above is it possible to prove 
triangles congruent when you have two sides and an angle as 
congruent corresponding parts. However. no special circumstances 
are necessary when you have two anlges and a side as congruent 
corresponding parts. The two rules ASA and AAS are used in these 
situations. 

ASA: 

If two angles and the included side of one triangle, ,",A BC, 
,",BCA, and Ie-, are congruent to the corresponding parts, 
,",XYZ,,",YZX. and fz, of another triangle, that is, ,",ABC! ,",XYZ. 
,",BCA Ii! ,",YZX, and BC ! YZ, 

then the triangles are congruent: .. ABC Ii "XYZ. 

OPT Text 10 



AAS: 

If two angles and a non-included side of one triangle, ,",IIBC, 

,",BCII, and AB, are congruent to the corresponding sides of 
another triangle, ,",XYZ, ,",YZX, and IN, that is, ,",IIBC IE ,",XYZ, 
DCII IE ,",YZX, and D 15 IN, 

then the triangles are congruent: .. IIBC I "XYZ. 

You now have four rules, sss, SIIS, IISII. and IIIIS, that you can use to 
prove triangles congruent. 

[] Do l'.Toblem N5. 0a PS- - ~_ 
--Choose problCiilPROB':3TIliitd read ~o~n~. ---.~--~~. 

The REFLEXIVE Rule 

In the following diagram it is given that XV 15 Yz and iW II iff: 

y 

x z 

w 

Can you apply SSS to this picture? Well. its the right idea but 
technically you cannot since sss requires 3 sets of corresponding 
sides and you've only been given 2. Where do you get the third set? 
Well, clearly 'V is congruent to itself. But, the question is how do 
you prove Nil Vi17 The REfLEX lYE rule is just for this purpose: 

REFLEXIVE: 
If segment liB appears in the diagram, 
then DID. LtD 

B 

OPT Text 11 



To show that two segments are congruent by the REFLEX lYE rule you 
do not need any statements as premises; it can be used as long as the 
segment appears in the diagram. Thus, when you are selecting 
premises for the REFLEX lYE rule you should select the diagram as the 
premise. Let's. do it with PROB311: 

Using tbe REFLEXIVE rule: 
o Move the mouse over to the problem diagram and 

click the left button. A box should appear around the 
iiiagram. If you don't see a box, try again, but hold the 
mouse button down a little longer. 

o Now indicate you are "Done selecting" in the usual way 
by holding the right button down letting go when the 
"Done selecting" option is highlighted. 

o Type in the rule, REFLEX lYE and press ENTER. 
o Enter the conclusion RY !i XY. 

When you are done with PROB311, this is how it should look on your 
screen: 

[] Finish PROB3J1. 
Choose problem PROB3S2. 

Getting Help 
If you know what you want to do and can't seem to get OPT to do it, 
feel free to ask Ken for help. If you're having trouble with figuring 

. out how to do the proof, you can ask OPT. 

Requesting Hints from GPT: 
o Hold down the right button and wait for the menu to 

pop up. 
o When it does, move the mouse (still holding the right 

button done!) past the "Done selecting" option up to 
the "Explain" option. Let go of the right button when 
"Explain" is highlighted. 

o If you want a .stronger hint, try "Explain" again. You 
can keep getting more and more specific hints and if 
you are really stuck the tutor will eventually show 
you what to do. 

OPT Text 12 



Finish as many of the remaining problems on the tracking sheet as 
you can. 

GPT Text 13 



~--- .... ~ . __ .... _-----------------~ 

Proof Construction Test: A 
Name: _____ _ Date: ____ _ 
Id#:_ Start time: ____ _ 
Circle one: Pre Post Finish time: ____ _ 

For each problem write a proof of the goal using the givens and any 
of the rules on the Rule Summary Sheet You may assume that any 
points which appear' colinear (on the same line) in the problem 
diagram are actually colinear. Here's an example problem and 
solution: 

O. Given: Ai e AIr ,&, BEeDE 

Goal: ..! BAC I ..!DAC 

c 

PROOF: 
Statements: Reasons: 
1.ABIAD 1. Given 
2. BE! DE 2. oi"~n 

S. P\C ::' Ac s. QULt)\lVt. 

If. tdiCiS~ .. ~c..t) 'to So ~s. 

), L BI\<: ;' L OI\C !;': (0 RIlt S - PAR. Ts. 



t.1 

1. Given: dFi I LH 

J&L ~dHIC I ~LHK 

Goal: rt~HKL 

K 

PROOF: 
Statements: Reasons: 
1. dH 15 rR 1. Given 
2. ~"HK 15 ~LHK 2. Given 



2. Given: 

Goal: 

PROOF: 

Ali. iff 
.t::ABG II .t::CBG 
lium 
.t::DCE II .t::GCE 

Statements: 
1.ABSiff 
2 • .t::ABG S .t::CBG 
3.iJf! EG 

B 

Reasons: 
1. Given 
2. Given 
3. Given 



3. Given: 

Goal: 

PROOF: 

rtQSU 
UilQU 
.4ps !iE AlPS 
.4MU !iE J!UQl 

Statements: 
l.rtLPSU 
2. Ui£! au 
5. J!lPS £! J!UPS 

p 

LIC-__ .L-_--..::r.. U 
S 

Reasons: 
I. Given 
2. Gtnn 
5. Ginn 



EXIRA GREDIT 
Remember: your reasons should only be rules which appear on the 
rule summary sheet. 

4. Given: AD! BC 
rt""GBC 
""F AH fi ""HCF 
""AOF ! ""COH 

Goal: M!!iiC 

PROOF: 
Statements: 
1. nl fit" 
2. rt""GBC 
3. -'FAH:: ""HCF 
... ""AOF :: ""COH 

B 

~--------~G~------~H 

Reasons: 
1. Gwen 
2. Given 
3. Given 
... Given 



Proof Construction Test: B 
Name: __ ---' __ _ Date: ____ _ 
Id#: __ Start time: ____ _ 
Circle one: Pre Post Finish time: ____ _ 

For each problem write a proof of the goal using the givens and any 
of the rules on the Rule Summary Sheet You may assume that any 
points which appear colinear (on the same line) in the problem 
diagram are actually colinear. Here's an example problem and 
solution: 

O. Given: AB 5 AD 
BE5Dc 

Goal: .£BAC :: .£DAC 

PROOF: 
Statements: 
I.AB iAD 
2.BC::DC -.~. Pte .;: [).c 

4. b.f\ l3J:: ~ b.ADC 
S. LBAc~LDAc.. 

Reasons: 
I.Oillen 
2.ol'u!R 

S RE1=L£XI v£ 
'1. SSS 
5. Cc(U .. 13'-fAftTS 



1. Given: rtL"KM :E7" LM"L: LMLK 

Goal: JM = LM 
L 

PROOF: 
Statements: Reasons: 
1.rtLJKM 1. Given 
2. LM"L = LMLK 2. Given 



2. Given: BY:; CY 
"t.,.,XY 5 "t.DXY 
"t.x,.,y : "t.XDY 

Goal: "t.BZY : "t.CZY 

PROOF: 
Statements: 
1. BY: CY 
2. "t.,.,XY $ "t.DXY 
3. "t.XI\Y = "t.XDY 

x 

z 

Reasons: 
1. Giv@1I 
2. Ginll 
3. Given 



3. Given: .LlO" ;: .LPQ" 
.LRlP 5 .LSPl ui$i ps 

Goal: rt.L!-"Q 

PROOF: 
Statements: 
1 • .£LO" 5 .LPQ" 
2 • .LRlP:; .LSPl 
3. me PS 

L 

Reasons: 
1. Biven 
2.0iven 
3. Given 

N 
P 



EXTRA CRRQIT 
Remember: your reasons should only be rules which appear on the 
rule summary sheet. 

4. Given: Fir II 6ii 
Ire!Ho 
"'FBG II "'GDH 
"'BGF !5 "'DGH 

Goal: "' ... BC ! "' ... DC 

PROOF: 
Statements: 
1. FG!5 GM 
2. 1re!5 CD 
3. "'FBG :: "'GDH 
4. "'ABC :: "' ... DC 

A 

FL.----'G~---' H 

Reasons: 
1. Given 
2. Given 
3. Given 
4. Given 



HIDDEN FIGURES TEST - CF-1 (Rev.) 

This is a test of your ability to tell wh~ch one ~f five Lg~res 
can be found, in a more :::ol':plex patterr:. At :he to>, ')f e.,en pa,ge in tr.is CCQ.s: 
are five simple figures lettered A, B, C, ,D, and E. Beneath each ro" of 
figures is a page of patterns. Each pattern has a row of letters benea~r. ~:. 
Indicate your answer by putting an X through the letter of the fig,lre whic~ 
you find in the patter~. 

NOTE: There is only one of these figures in each pattern, and this 
figure-vrll always' be right side up and exactly the s~~e size as one of the 
five lettered figures. 

Now try these 2 examples. 

A B c o E. 

1 n 

ABC D E ABC D E 

1 

ABC X E 

leur score on tr..:.r:: tes t v:.ll ·c",= "t::e llU!~ber !~:Jr~"~C~ .:orr€l.!:':':'· ~i:1';.~s ::A. 

fr:a.ct1on of the n'U.":lber ::3rked i!:corre'2: 1:'1. There!"' .)r~, it \-l:'ll :lot be t.o 
your ac.v:3..t"1ta.ge -:0 g';,.less :.~n!ess ~: .. ou 3.re :';'"01: to el::;::ir:.a::e cne ::-r -;Ore t::e 
ans\¥'er c~oices !,S W"r'~:-:£ ~ 

You will have 12 minutes fer each of the tvo parts of this test. 
Each part has 2 pages. When you have finished Part 1, S'IOP. Please 
do not go on to Part 2 until you are asked to do ~O. 

!lO :':01' Tl'RN THIS PAGE !J::'!IL ASJ<:::ll TO DO .30. 

I ) . 



'. 

Page 2 

Part 1 (12 minutes) 

A B c o E 

ABC 0 E ABC D E ABC D E 

4. 
5. 6. 

ABCUE ABC U E ABC D E 

8. 9. 

ABC 0 E ABC 0 E ABC D E 

GO ON TO THE NEXT PAGE 



'. CF-l 

Part 1 (continued) 

A B c o E 

12. 
11. 

ABC D E ABC D E ABC D E 

13. 14. 

ABC D E ABC D E 

15. 16. 

ABC l.l E ABC D E 

DO NOT TURN THIS PAGE UNTIL ASKED TO DO SO 



'. 
Part 2 (12 lllinutes) -. -.~ 

. ' 

A B c D E 

17. 18. 19. 

ABC D E ABC D E ABC D E 

21. 22. 

ABC D E ABC D E ABC D E 

24. 25. 

ABC D E ABC D E 

00 ON TO THE NEXT PAGE 



Page 5 
CF-I 

Part 2 (continued) 

A e c o E 

27. 28. 

ABeDE ABeDE 

29. 30. 

ABC D E 

31. 32. 

ABC D E e D E 

DO NOT GO BACK TO PART I, AND 
DO NOT GO ON TO ANY OTHER TEST UNTIL ASKEI:i TO DO SO. 



.. 
Name 

HIDDEN FIGURES TEST - CF-1 (Rev.) 

This is a test of your abil:.ty to tell wh:'ch one :f five 5:'::-,101'0 f':'6~reE 

can be found in a more =omplex patterr.. At ';;he tOli ?f es.ch page ir. tr.:.s :~s-: 
are five simple fig\lres lettered A, B, C, .D, and E. Beneath each rO'.l of 
figures is a page of patterns. Each pattern has a row of letters beneath i:. 
Indicate your answer by putting an X through the letter of the figare ",-hien 
you find in the pattern. 

NOTE: There is only one of these figures in each pattern, and this 
figur~ll always be right side up and exactly the s~e size as one of the 
five lettered figures. 

Now try these 2 ex~ples. 

A e c o E. 

II 

ABC DE ABC D E 

II 

AEC):,E 

Yeur score un tr..:,s ~e$ t ",:'11 ·ce 't~·.e m.:;~ber !:,!3l"~'~c6. .:orrec:":":t ~i:rLlS :l 

fr;;iction of tr:.e n'i!.'7loe::- :::,srked i::corre::!~l:l. Theref .:r~, it '1.':'1.: ~ be '::J 

your adv:a.."1to'ge :'0 guess ~~r..:::'('!$$ ~,..ou ~l"e :;:b1; to el:'~inEl~e one ':>r :;lore ::::~ t!>= 
ansW'er c~oices ~,S tVl'c:'"',;. 

You will have 12 ~inutes for each of the two parts of this test. 
Each part has 2 pages. When you have finished Part 1, STOP. Please 
do not go on. to Par~ " until ycu are asked to do :00. 

:l0 ;':OT Tt'RN ':'HIS PAGE U:::rIL ASK!!:D TO DO ,,0. 



Page 2 

Part 1 (12 minutes) 

A B c o E 

1. 

A E C D E 

5. 6. 

ABC D E C D E A E C D E 

8. 9. 

ABC D E A E C D E C D E 

GO ON TO THE NEXT PAGE 



Part 1 (continued) 

A B c o E 

10. 
11. 

12. 

ABC D E ABC D E 

14. 

ABC!)E 

16. 

ABCllE ABC D E 

DO NOT TURN THIS PAGE UNTIL ASKED TO DO SO 



Part 2 (12 minutes) 
.. 

A B c o E 

17. 18. 19. 

ABC D E ABCDE 

21. 22. 

ABC 0 E ABC D E ABC D E 

24. 25. 

ABC D E ABC D E 

00 ON TO nlE NEXT PAGE 



Page 5 
CF-I 

Part 2 (continued) 

A B c o E 

. 26. 27 • 28. 

ABC D E ABC D E 

30. 

ABC D E 

32. 

ABC D E ABC D E 

DO NOT GO BACK TO PART I, AND , 
DO NOT GO ON TO ANY OTHER TEST UNTIL ASKE!! TO DO SO. 



Truth Judgment Test: A 
Name: ______ _ Date: _____ _ 

Stan time: 
Finish time:------

Id#:_ 
Circle one: Pre Post 

Below is series of yes-no questions which require you to do some 
geometriC reasoning. The questions all request you to imagine cenain 
relationships about a problem diagram, for example, in the diagram below 
imagine that m~" 20 and mAS" 5 . 

• • • A B c 

Then you'll be asked whether some other relationship must be true, for 
example, in the situation above would mm; have to be 15, that is, must mii'C = 
151 In this case the answer would be YES, since the two parts of AC must 
add up to 20. The only thing you can assume about the diagram is that all 
lines which appear straight are, in other words, all points which appear 
colinear can be assumed to be colinear. However, the diagram may be 
misleading in other ways. For example, in the diagram above, it doesn't 
look like BC is longer than J:B even though the givens m~ = 20 and mAS .. 5 
indicate it must be. Don't let the diagram sway your decision. Its the 
relationships you are given that count. Here's the example above written 
in shoner form. 

a. If m~ .. 20 and mB = 5, must mii'C" 151 • • B A • c ® 
CAN'T 
TELL 

In the next example, you CAN'T TELL for sure that mRS .. 5 since the 
information you are given mGS II 10 and mSf .. 5 doesn't say anything about 
the exact position of point R between Q and S - for example, mc:m could be 1 
and mRS' could be 9. 

b. If mGS = 10 and mS"f .. 5, must mRS .. 51 ... ---..1---.... __ • YES 
Q R S T 

~~ 
~ 



L If ":::8CD 5 ":::DCA, must H J. CD? 

2. If rt":::EtfD, must Cii I! Rii? 

3. If rR I! t1Q, must [Q J. RFi? 

4. If rt":::AXC, must ":::AXC I! ":::CX8? 

5. If A8 l! XV, Be I! n, and Af!! Xl. must ":::A8C !! 

":::Xyz? 

6. If ":::A8C I! ":::ADC and ":::AC8 I! ":::ACD. must 
"A8C!! .. ADC? 

o 

A c B 

E 

o---+-:H-:--- 0 

~Q 
M 

c 

A--+..,---B 

-......t.1--7D 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 



7. If AOEH I AOEH, must Tt...:!EHG1 

8. If ...:!SCF 5 ...:!OCG, ...:!CFS 5 ...:!CGD, and if 166, 
must ...:!SAC • ...:!oAc1 

9. If Aii 5 DE, ...:!ACS l! ...:!EGO, and Ie if ro, must 
Ai: Iii fiG1 

10. If Tt...:!I1KL and JR' I i:K, must ...:!"'"K I ...:!LI1K? 

1 L If ...:!TQU 5 ...:!ftQU and ...:!QTU I ...:!QftU, must 
...:!STU Iii ...:!Sftu? 

12. If ...:!QftS 5 ...:!TSft and Q! = !T, must AQftS I 
ATSft? 

F'----;:f---"'G 

'i---",.iR 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 



13. If .. t,",CGE and CG Ii tm; must AECH ! AEOH? 

14. If AXYW = AZYW, must XW I fti? 

15. If .. t,",BCII and 1iif e EX, must AIIBX 5 

AIIOX? 

16. If ,",FGB Ii ,",HOD, ,",GFB 5 ,",GHD,BE! rn:, and 
BF! 00, must ,",GCB e ,",GCD? 

17. If ,",OCG Ii ,",BCG and ,",COO Ii ,",CBO, must 
,",DIIG 5 ,",DCO? 

E 

CL-_+_30 

c 

F r----lIl"---,H 

A 

B 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 



Truth Judgment Test: 8 
Name: ______ _ Date: _____ _ 

Id#:_ Start time: _____ _ 
Circle one: Pre Post Finish time: _____ _ 

Below is series of yes-no questions which require you to do some 
geometriC reasoning. The questions all request you to imagine certain 
relationships about a problem diagram, for example, in the diagram below 
imagine that mAC _ 20 and mAS _ 9 . 

• • • A B c 

Then you'll be asked whether some other relationship must be true, for 
example, in the situation above would mac have to be 19, that is, must mlJC = 
151 In this case the answer would be YES, since the two parts of AC must 
add up to 20. The only thing you can assume about the diagram is that all 
lines which appear straight are, in other words, all points which appear 
colinear can be assumed to be colinear. However, the diagram may be 
misleading in other ways. For example, in the diagram above, it doesn't 
look like Be is longer than AD even though the givens mAC = 20 and mAS _ 5 
indicate it must be. Don't let the diagram sway your decision. Its the 
relationships you are given that count. Here's the example above written 
in shorter form. 

a. If mAc _ 20 and mAS = 5, must mac _ 157 • • B A • c e 
CAN'T 
TELL 

In the next example, you CAN'T TELL for sure that mRS _ 5 since the 
information you are given mQS _ 10 and mSf _ 9 doesn't say anything about 
the exact position of point R between Q and S - for example, mQR could be I 
and mRS could be 9. 

b. If mQS = 10 and mST = 9, must mRS = 51 • YES • • • R T Q 5 



2. If AC II EB. must AD l. co? 

3. If "QRS II "TSR and "QSR II "TRS, must 
..o.QRS :; ..0. TSR? 

S. If AD = XY. "ACB = "XZY. and BE II 'fl, must 
"ABC:: "XYl? 

6. If "FGB :: "HGO, "GFB Ii! "GHO, and SF 5 mr, 
must "GCB = "GCO? 

E 

o--~H'---D 

~ 
A C B 

A-/-' 
o 

F r---,lii!.--"'!H 

YES 

CAN'T 
TELL 

YE.S 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 



7. If ';:::QMR = ';:::LMR, must'LQ .L RFi? 

8. If Ail = DE, Be ;: W, and AC;: W, must ';:::ABC ;: 

';:::OEG? 

9. If ';:::BCA :: ';:::OCA and Be! iIW, must AABC :: 

AAOC? 

10. If AOEH = AGEH, must 1m = Hi? 

11. If ';:::TQU !i ';:::RQU and ';:::QTU ! ~QRU, must 

~TSU !i ~TQU? 

12. If Axnl :: AlYW, must rt';:::YWX? 

~a 
M 

B ~_-7D 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 



13. If rt..t::ACD and Br Iili 61:", must ..t::BAC Iili ..t::OAC? 

14. If rt..t::CGE and m Iili Gil, must 6ECH = 6EDH? 

IS. If ..t::BCF Iili ..t::OCG, ..t::CFB i ..t::CGD, 8A 5 iiA, and 
iif == i:iG, must ..t::BAC = ..t::DAC? 

16. If ..t::DCO Iili ..t::BCG and ..t::CDO = ..t::CBG, must 
..t::AOO 5 ..t::ABG? 

17. Ifrt..t::BCA and Be:: CD, must 6ABlC .. 

6ADX? 

A 

B o 

E 

C"---;::---" 0 

F'-----,:II-----' G 

A 

B 

c 

B"":::"--'--..lID 
c 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 

YES 

CAN'T 
TELL 



Proof Checking Test: A 
Name: _____ _ Date: ____ _ 
Id#: __ Start time: ____ _ 
Circle one: Pre Post Finish time: ____ _ 

For each proof that follows check each line to see if it follows from 
the preceeding lines. If it does, put "OK" after the line. If it does not, 
put "doesn't follow" after the line and indicate why. In the example 
below, line 3 is OK, but line 4 is not. There must be a congruent 
triangle statement preceeding the use of CORRES-PARTS, but the 
statement .ABC £! .ADC is missing. 

NOTE: There may be more than one error in these proofs . 

O. Given: Aiie AD 
Be'EDC 

Goal: ,",BAC e ,",OAC 

PROOF: 
Statements: 
1. ABe AD 
2. Be' £! DC 
3.~e~ 
of. -'BAC e ""AC 

. LtD 
C 

Reasons: 
l.oiven 
2. Given 
3. REFLEXIVE c"­
of. CORRES-PARTS 



1. Given: AiiliC 
Dliff 
":::ABDI":::CDB 

Goal: ..:::sAD I ..:::oCB 

PROOF: 
Statements: 
1. Aiillii! 
2.Dliff 
3 • ..:::ABD I":::CDB 
4 .... ABDI ... CDB 
s . ..:::sAD I":::DCB 

2. Given: rt ":::,,,"IC 
"'IC I i:'f 

Goal: ... JlCI1I ... LICI1 

PROOF: 
Statements: 
1. rt ":::"'"1<: 
2.JK!i:'f 
3. ":::.II1K I ":::LI1K 
4. FiK I RiC 
S. "''''KI1 I ... LKI1 

Reasons: 
1. Owen 
2.0lven 
3. GWen 
4.SAS 
S. CORRES-PARTS 

Reasons: 
1.0iven 
2. Glvell 
3. CO"6-AD.J-A"6S 
4. REFLEX lYE 
5.SAS 



3. Given: ~QUSIi.aUR 
iiUfR 
~RSIi~USR 
~QUSI~TUR 
~RQIi~ST 

4. 

Goal: 

PROOF: 
Statements: 
1. ~QUS Ii ~TUR 
2.0"1 'iR 
3. ~RS Ii! ~USR 
... ~QUS I ~TUR 
:5. ~QR 5 ~UTS 
6. QU Ii 'fiJ . 
7. AUQR Ii! AUTS 
8. ~URQ Ii ~UST 

Given: Gf Ii! rA 
~OFK Ii!~FK 

Goal: ~.JGK Ii! ~.JHK 

PROOF: 
Statements: 
•. e IrA 
2. ~OFK I ~HFK 
3. rK!H'i' 
... AOFK Ii! AHFK 
:5. bKO Ii ~FKH 
6. ~.JKO Ii ~.JKH 
7.~1i~ 
8. AOK.J Ii! AHK.J 
9. ~.JOK I ~.JHIC 

G 

Reasons: 
•• ewen 
2. eiven 
3. ewen 
... elven 
:5. AAS 
6. CORRES-PARTS 
6.AAS 
7. CORRES-PARTS 

F: 

H 

J 

Reasons: 
1. Given 
2.0tvell 
3. REflEXIVE 
".ASA 
:5. CORRES-PARTS 
6. CONO-AO.J-ANGS 
7. REFLEXIVE 
8.SAS 
9. CORRES-PARTS 



Proof Checking Test: 8 
Name: __ ~ __ _ Date: ____ _ 
Id#: __ Start time:_~ __ _ 
Circle one: Pre Post Finish time:, ____ _ 

For each proof that follows check each line to see if it follows from 
the preceeding lines.' If it does, put "OK" after the line. If it does not, 
put "doesn't follow" after the line and indicate why. In the example 
below, line 3 is OK, but line 4 is not. There must be a congruent 
triangle statement preceeding the use of CORRES-PARTS, but the 
statement .ABC S .ADC is missing. 

NOTE: There may be more than one error in these proofs. 

O. Given: A1J i Ali 
BC!Dc 

Goal: ""BAC S ""DAC 

PROOF: 
Statements: Reasons: 

I. Oi"en 
2. Ginn 

I.ASSAD 
2. iiCS Dc' 
is. AC Ii AC 
•• ""BAC ! ""DAC 

is. REFLEX lYE OK. f'~ n 
•• CORRES-PARTS ~+ ~ ~> ~l <;.',\>;WJ 

b.M~c ~ ~f.\bC. 



1. Given: 

Goal: 

PROOF: 

BC'liIC 
ABIUi 
"",BAC I "",DAC 
"",ABC I "",DC 

Statements: 
l.iCliIC 
2. Aiil Ui 
I. "",BAC • "",DAC 
.... .. ABC ... ADC 
S. ""'BC • "",ADC 

2. Given: 'i'\i I Wl 
--'Yxw I "",zxw 

Goal: rt "",xwz 

PROOF: 
Statements: 
l.ywlWl 
2. --'YXW I "",ZXW 
I.xwexw 
...... YXW I .. zxw 
S. "",XWY I "",XWZ 
6. rt ""'XWZ 

D 

Reasons: 
1.6we .. 
2. Ill". .. 
I. Ill". .. 
.... SAS 
S. CORRES .... ARTS 

Reasons: 
1. oj". .. 
2. Ilive .. 
I. REFLEXIVE 
.... SAS 
S. CORRES .... ARTS 
6. DEF-PERP 



3. Given: "':::BCF liI",:::oCG 
"':::CFB IiI"':::CGO 
IAIDX 
IIJ'.iZ 

Goal: "':::BAc iii "':::OAC 

PROOF: 
Statements: 
1 • ..tBCF liI"':::OCG 
2 • ...:::CFBIiI...:::CGD 
3.BXaDX 
... lIJ'liZ 
:I. ABCF IADCG 
6.RIire" 
7.~Ii!AC 
8. "':::8AC I!! "':::DAC 

4. Given: rt"':::CGE 
Cirl!! GO 

Goal: "':::ECH li!"':::EDH 

PROOF: 
Statements: 
1. rt"':::CGE 
2.CirI GO 
3.£iilni 
... ...:::eGE Ii! "':::DGE 
:I. ACGE Ii! ADGE 
6. et I or 
7.iiilEii 
8. ACEH IADEH 
9 • ...:::ECH I"':::EDH 

F'----:l----1 G 

Reasons: 
1. GI".. 
2. GI" •• 
3. Gin • 
... Gin. 
:I.A5o' 
6. CORRES"'PARTS 
7. REFLEX lYE 
8.SSS 

E 

CL--G=-~D 

Reasons: 
1. Gin. 
2. Gin. 
3. REFLEX lYE 
... COMG-AD.J-AMGS 
:I. ASA 
6. CORRES-PARTS 
7. REFLEX lYE 
8.SSS 
9. CORRES"'PARTS 


